76 resultados para 190-1176
Resumo:
The baculovirus expression system using the Autographa californica nuclear polyhedrosis virus (AcNPV) has been extensively utilized for high-level expression of cloned foreign genes, driven by the strong viral promoters of polyhedrin (polh) and p10 encoding genes. A parallel system using Bombyx mori nuclear polyhedrosis virus (BmNPV) is much less exploited because the choice and variety of BmNPV-based transfer vectors are limited. Using a transient expression assay, we have demonstrated here that the heterologous promoters of the very late genes polh and p10 from AcNPV function as efficiently in BmN cells as the BmNPV promoters. The location of the cloned foreign gene with respect to the promoter sequences was critical for achieving the highest levels of expression, following the order +35 > +1 > -3 > -8 nucleotides (nt) with respect to the polh or p10 start codons. We have successfully generated recombinant BmNPV harboring AcNPV promoters by homeologous recombination between AcNPV-based transfer vectors and BmNPV genomic DNA. Infection of BmN cell lines with recombinant BmNPV showed a temporal expression pattern, reaching very high levels in 60-72 h post infection. The recombinant BmNPV harboring the firefly luciferase-encoding gene under the control of AcNPV polh or p10 promoters, on infection of the silkworm larvae led to the synthesis of large quantities of luciferase. Such larvae emanated significant luminiscence instantaneously on administration of the substrate luciferin resulting in 'glowing silkworms'. The virus-infected larvae continued to glow for several hours and revealed the most abundant distribution of virus in the fat bodies. In larval expression also, the highest levels were achieved when the reporter gene was located at +35 nt of the polh.
Resumo:
This paper describes a mechanism of coupling periodate-oxidized nucleosides to proteins. Each of the dialdehyde groups of a periodate-oxidized nucleoside is shown to couple to lysine residues on different protein molecules through Schiff bases, thereby cross-linking different protein molecules, forming a polymer. This is in contrast to the previous model in which nucleosides were suggested to couple to proteins through a morpholine structure. The cross-linked structure of the nucleoside-antigen, significantly different when compared to the native protein, may affect the specificity and the efficiency of antibody production.
Resumo:
Conventional thinkin g holds that increased energy consumption is a prerequisite for economic and social development. This belief, together With the prospect of dwindling global petroleum supplies and the high costs of expanding energy supply generally, lead many to believe that it is not feasible to improve living standards substantially in the developing countries. But by shifting to high-quality energy carriers and by exploiting cost-effective opportunities for more efficient energy use, it would be possible to satisfy basic human needs and to provide considerable further improvements in living standards without significantly increasing per-capita energy use above the present level.
Resumo:
Controversy exists in the published literature as to the effect of silicon content and pressure on the dry sliding wear of Al---Si alloys. The present paper attempts to clarify the question by reporting a statistical analysis of data obtained from factorially designed experiments conducted on a pinon-disc machine in the pressure range 0.105–1.733 MPa and speed range 0.19–0.94 m s−1. Under these conditions it was found that, in the range 4–24 wt.% Si, wear of binary unmodified alloys does not significantly differ between the alloys. However, it is significantly less than that corresponding to an alloy containing no silicon. The effect of pressure on wear rate was found to be linear and monotonie and, over the narrow range of speeds used, the wear rate was found to be unaffected by speed. The coefficient of friction was found to be insensitive to variations in silicon content, pressure and speed.
Effect of Temperature Variation on Sister Chromatid Exchange Frequency in Cultured Human Lymphocytes
Resumo:
The effect of temperature variation on sister chromatid exchange (SCE) frequencies in human lymphocytes was studied. An increase as well as decrease in incubation temperature of cells leads to a higher frequency of sister chromatid exchanges than in cultures grown at 37°C. In addition, it was observed that mitotic: index and cell cycle duration were affected by low temperature.
Resumo:
An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
Resumo:
Whole cells, homogenates and mitochondrial obtained from the livers of albino rats which were starved for 6 days or more showed a 50% decrease in oxidative activity. The decrease could be corrected by the addition of cytochrome c in vitro. The phosphorylative activity of mitochondria remained unaffected. The decrease in oxidative rate was not observed when starving animals were given the anti-hypercholesterolaemic drug clofibrate. The total cellular concentration of cytochrome c was not affected by starvation. However, the concentration of the pigment in hepatic mitochondria isolated from starving animals was less than half that in normal mitochondria. Clofibrate-treated animals did not show a decreased concentration of cytochrome c in hepatic mitochondria. Mitochondria isolated from starving animals, though deficient in cytochrome c, did not show any decrease in succinate dehydrogenase activity or in the rate of substrate-dependent reduction of potassium ferricyanide or attendant phosphorylation. In coupled mitochondria, ferricyanide may not accept electrons from the cytochrome c in the respiratory chain. Starvation decreases the concentration of high-affinity binding sites for cytochrome c on the mitochondrial membrane. The dissociation constant increases in magnitude.
Resumo:
Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.
Resumo:
The technique of 13C-NMR spectroscopy of oriented systems to problems of biological importance has been suggested and used to investigate non-planar distortions in substituted amides—models for peptides. The studies in conjunction with the proton magnetic resonance data on 5N-[13C]methyl[13C]formamide oriented in a nematic solvent provide all the direct dipolar couplings between the interacting nuclei in the system. When the 13C- and the 1H-NMR experiments are performed under non-identical conditions, 22 different direct dipolar couplings are obtained. It is demostrated that they can be used to determine unambiguously non-planar distortions around the nitrogen atom together with other geometrical data and the molecular order.
Resumo:
From a temperature programmed desorption study employing a quadrupole mass spectrometer, the superconducting oxide YBa2Cu3O7−δ (δ = 0.05) showed two distinct oxygen desorption peaks, one below and one above 470°C. The activation energy of oxygen desorption of the superconducting oxide was 28 Kcals/mole and that of non-superconducting oxide (YBa2Cu3O6.5) was 54 Kcals/mole. No impurity peaks due to H2O, CO and CO2 from the bulk or adsorbed on surfaces could be observed when a well prepared superconducting oxide was heated up to 650°C.
Resumo:
Regulating systems, that is, those which exhibit scale-invariant patterns in the adult, are supposed, to do so on account of interactions between cells during development. The nature of these interactions has to be such that the system of positional information (ldquomaprdquo) in the embryo also regulates. To our knowledge, this supposition regarding a regulating map has not been subjected to a direct test in any embryonic system. Here we do so by means of a simple and novel criterion and use it to examine tip regeneration in the mulicellular stage (slug) ofDictyostelium discoideum. When anterior, tip-containing fragments of slugs are amputated, a new tip spontaneously regenerates at the cut surface of the (remaining) posterior fragment. The time needed for regeneration to occur depends on the relative size of the amputated fragment but is independent of the total size of the slug. We conclude from this finding that there is at least one system underlying positional information in the slug which regulates.
Resumo:
The homogeneous serine hydroxymethyltransferase from monkey liver was optimally activate at 60°C and the Arrhenius plot for the enzyme was nonlinear with a break at 15°C. The monkey liver enzyme showed high thermal stability of 62°C, as monitored by circular dichroism at 222 nm, absorbance at 280 nm and enzyme activity. The enzyme exhibited a sharp co-operative thermal transition in the range of 50°-70° (Tm= 65°C), as monitored by circular dichroism. L-Serine protected the enzyme against both thermal inactivation and thermal disruption of the secondary structure. The homotropic interactions of tetrahydrofolate with the enzyme was abolished at high temperatures (at 70°C, the Hill coefficient value was 1.0). A plot of h values vs. assay temperature of tetrahydrofolate saturation experiments, showed the presence of an intermediate conformer with an h value of 1.7 in the temperature range of 45°-60°C. Inclusion of a heat denaturation step in the scheme employed for the purification of serine hydroxymethyltransferase resulted in the loss of cooperative interactions with tetrahydrofolate. The temperature effects on the serine hydroxylmethyltransferase, reported for the first time, lead to a better understanding of the heat induced alterations in conformation and activity for this oligomeric protein.
Resumo:
The ratio of diffusion coefficient to mobility (D/¿) for electrons has been measured in SF6-air and freon-nitrogen mixtures for various concentrations of SF6 and freon in the mixtures over the range 140¿ E/p¿ 220 V.cm-1 - torr-1. In SF6-air mixtures, the values of D/¿ were always observed to lie intermediate between the values for the pure gases. However, in freon-nitrogen mixtures, with a small concentration (10 percent) of freon in the mixture, the values of D/¿ are found to lie above the boundaries determined by the pure gases. In this mixture, over the lower E/p range (140 to 190) the electrons appear to lose a large fraction of their energy by the excitation of the complex freon molecules, while at higher E/p values (200 to 240), the excitation and consequent deexcitation of nitrogen molecules and its metastables seem to cause an increased rate of ionization of freon molecules.
Resumo:
It has been observed that a suspension of sodium fluoride in boiling acetonitrile could be used for the preparation of fluorine compounds such as silicon tetrafluoride [1], thiophosphoryl fluoride [2], sulphur tetrafluoride [3,4], and fluorocyclophosphazenes [5]. This method, when adopted for the fluorination of sulphuryl chloride [6], it is observed that a mixture of sulphuryl fluoride and sulphuryl chloro fluoride is obtained. On the other hand, when lead fluoride is substituted for sodium fluoride, pure sulphuryl chloro fluoride is evolved. Based on this observation, a new method has been standardised for the preparation of a pure sample of sulphuryl chlorofluoride by fluorinating sulphuryl chloride by lead fluoride in acetonitrile medium.