2 resultados para Ultrasonic inspections
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The objective of this study was to extend the use of combined longitudinal (P-wave) and shear (S-wave) ultrasonic wave reflection (UWR) to monitor the setting and stiffening of self-compacting pastes and concretes. An additional objective was to interpret the UWR responses of various modified cement pastes. A polymeric buffer with acoustic impedance close to that of cement paste, high impact polystyrene, was chosen to obtain sensitive results from the early hydration period. Criteria for initial and final set developed by our group in a prior study were used to compute setting times by UWR. UWR results were compared with standard penetration measurements. Stiffening behavior and setting times for normal cement pastes, pastes modified with mineral and chemical admixtures, self-compacting pastes, and concretes were explored using penetration resistance, S-wave and P-wave reflection. All three methods showed that set times of pastes varied linearly with w/c, that superplasticizer and fly ash delayed the set times of pastes, and that differences in w/cm, sp/cm, and fa/cm could be detected. Final set times determined from UWR correlated well with those from penetration resistance. Initial set times from S-wave reflection did not correlate very well with those from penetration resistance. Final set times from P-wave and S-wave reflection were roughly the same. Pastes with different chemical admixtures were tested, and the effects of these admixtures on stiffening were determined using UWR. Self-compacting concretes were studied using UWR, and their response and setting times were largely similar to that of corresponding self-compacting pastes. The P-wave reflection response was explored in detail, and the phenomenon of partial debonding and the factors affecting it were explained. Partial debonding is probably caused by autogenous shrinkage at final set, and was controlled and limited by water. The extent of partial debonding was higher with the transducers placed on the side as opposed to the bottom, and the S-wave transducer seemed to promote debonding in the P-wave reflection, whereas the P-wave transducer seemed to reduce debonding in the S-wave reflection. Simultaneous formwork pressure testing and UWR were performed; however, no clear correlation was seen between the two properties.
Resumo:
Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. This method can be applied on structures where x-ray tomography is impractical due to size, low contrast, or safety concerns. By taking many ultrasonic pulse velocity (UPV) readings through the object, an image of the internal velocity variations can be constructed. Air-coupled UPV can allow for more automated and rapid collection of data for tomography of concrete. This research aims to integrate recent developments in air-coupled ultrasonic measurements with advanced tomography technology and apply them to concrete structures. First, non-contact and semi-contact sensor systems are developed for making rapid and accurate UPV measurements through PVC and concrete test samples. A customized tomographic reconstruction program is developed to provide full control over the imaging process including full and reduced spectrum tomographs with percent error and ray density calculations. Finite element models are also used to determine optimal measurement configurations and analysis procedures for efficient data collection and processing. Non-contact UPV is then implemented to image various inclusions within 6 inch (152 mm) PVC and concrete cylinders. Although there is some difficulty in identifying high velocity inclusions, reconstruction error values were in the range of 1.1-1.7% for PVC and 3.6% for concrete. Based upon the success of those tests, further data are collected using non-contact, semi-contact, and full contact measurements to image 12 inch (305 mm) square concrete cross-sections with 1 inch (25 mm) reinforcing bars and 2 inch (51 mm) square embedded damage regions. Due to higher noise levels in collected signals, tomographs of these larger specimens show reconstruction error values in the range of 10-18%. Finally, issues related to the application of these techniques to full-scale concrete structures are discussed.