10 resultados para wolf
em Helda - Digital Repository of University of Helsinki
Resumo:
Congenital missing of teeth, tooth agenesis or hypodontia, is one of the most common developmental anomalies in man. The common forms in which one or a few teeth are absent, may cause occlusal or cosmetic harm, while severe forms which are relatively rare always require clinical attention to support and maintain the dental function. Observation of tooth agenesis is also important for diagnosis of malformation syndromes. Some external factors may cause developmental defects and agenesis in dentition. However, the role of inheritance in the etiology of tooth agenesis is well established by twin and family studies. Studies on familial tooth agenesis as well as mouse null mutants have also identified several genetic factors. However, these explain syndromic or rare dominant forms of tooth agenesis, whereas the genes and defects responsible for the majority of cases of tooth agenesis, especially the common and less severe forms, are largely unknown. In this study it was shown, that a dominant nonsense mutation in PAX9 was responsible for severe tooth agenesis (oligodontia) in a Finnish family. In a study of tooth agenesis associated with Wolf-Hirschhorn syndrome, it was shown that severe tooth agenesis was present if the causative deletion in 4p spanned the MSX1 locus. It was concluded that severe tooth agenesis was caused by haploinsufficiency of these transcription factors. A summary of the phenotypes associated with known defects in MSX1 and PAX9 showed that, despite similarities, they were significantly different, suggesting that the genes, in addition to known interactions, also have independent roles during the development of human dentition. The original aim of this work was to identify gene defects that underlie the common incisor and premolar hypodontia. After excluding several candidate genes, a genome-wide search was conducted in seven Finnish families in which this phenotype was inherited in an autosomal dominant manner. A promising locus for second premolar agenesis was identified in chromosome 18 in one family and this finding was supported by results from other families. The results also implied the existence of other loci both for second premolar agenesis and for incisor agenesis. On the other hand the results did not lend support for comprehensive involvement of the most obvious candidate genes in the etiology of incisor and premolar hypodontia. Rather, they suggest remarkable genetic heterogeneity of tooth agenesis. The available evidence suggests that quantitative defects during tooth development predispose to a failure to overcome a developmental threshold and to agenesis. The results of the study increase the understanding of the etiology and heredity of tooth agenesis. Further studies may lead to identification of novel genes that affect the development of teeth.
Resumo:
Background: Using array comparative genomic hybridization (aCGH), a large number of deleted genomic regions have been identified in human cancers. However, subsequent efforts to identify target genes selected for inactivation in these regions have often been challenging. Methods: We integrated here genome-wide copy number data with gene expression data and non-sense mediated mRNA decay rates in breast cancer cell lines to prioritize gene candidates that are likely to be tumour suppressor genes inactivated by bi-allelic genetic events. The candidates were sequenced to identify potential mutations. Results: This integrated genomic approach led to the identification of RIC8A at 11p15 as a putative candidate target gene for the genomic deletion in the ZR-75-1 breast cancer cell line. We identified a truncating mutation in this cell line, leading to loss of expression and rapid decay of the transcript. We screened 127 breast cancers for RIC8A mutations, but did not find any pathogenic mutations. No promoter hypermethylation in these tumours was detected either. However, analysis of gene expression data from breast tumours identified a small group of aggressive tumours that displayed low levels of RIC8A transcripts. qRT-PCR analysis of 38 breast tumours showed a strong association between low RIC8A expression and the presence of TP53 mutations (P = 0.006). Conclusion: We demonstrate a data integration strategy leading to the identification of RIC8A as a gene undergoing a classical double-hit genetic inactivation in a breast cancer cell line, as well as in vivo evidence of loss of RIC8A expression in a subgroup of aggressive TP53 mutant breast cancers.
Resumo:
Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma.
Resumo:
Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.
Resumo:
Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.
A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH