64 resultados para viral
em Helda - Digital Repository of University of Helsinki
Resumo:
Cell division, which leads to the birth of two daughter cells, is essential for the growth and development of all organisms. The reproduction occurs in a series of events separated in time, designated as the cell cycle. The cell cycle progression is controlled by the activity of cyclin-dependent kinases (CDK). CDKs pair with cyclins to become catalytically active and phosphorylate a broad range of substrates required for cell cycle progression. In addition to cyclins, CDKs are regulated by inhibitory and activating phosphorylation events, binding to CDK-inhibitory proteins (CKI), and also by subcellular localization. The control of the CDK activity is crucial in preventing unscheduled progression of the cell cycle with mistakes having potentially hazardous consequences, such as uncontrolled proliferation of the cells, a hallmark of cancer. The mammalian cell cycle is a target of several DNA tumor viruses that can deregulate the host s cell cycle with their viral oncoproteins. A human herpesvirus called Kaposi s sarcoma herpesvirus (KSHV) is implicated in the cause of Kaposi s sarcoma (KS) and lymphoproliferative diseases such as primary effusion lymphomas (PEL). KSHV has pirated several cell cycle regulatory genes that it uses to manipulate its host cell and to induce proliferation. Among these gene products is a cellular cyclin D homologue, called viral cyclin (v-cyclin) that can activate cellular CDKs leading to the phosphorylation of multiple target proteins. Intriguingly, PELs that are naturally infected with KSHV consistently express high levels of CDK inhibitor protein p27Kip1 and still proliferate actively. The aim of this study was to investigate v-cyclin complexes and their activity in PELs, and search for an explanation why CKIs, such as p27Kip1 and p21Cip1 are unable to inhibit cell proliferation in this type of lymphoma. In this study, we found that v-cyclin binds to p27Kip1 in PELs, and confirmed this novel interaction also in the overexpression models. We observed that p27Kip1 associated with v-cyclin was also phosphorylated by a v-cyclin-associated kinase and identified cellular CDK6 as the major kinase partner of v-cyclin responsible for this phosphorylation. Analysis of the p27Kip1 residues targeted by v-cyclin-CDK6 revealed that serine 10 (S10) is the major phosphorylation site during the latent phase of the KSHV replication cycle. This phosphorylation led to the relocalization of p27Kip1 to the cytoplasm, where it is unable to inhibit nuclear cyclin-CDK complexes. In the lytic phase of the viral replication cycle, the preferred phosphorylation site on p27Kip1 by v-cyclin-CDK6 changed to threonine 187 (T187). T187 phosphorylation has been shown to lead to ubiquitin-mediated degradation of p27Kip1 and downregulation of p27Kip1 was also observed here. v-cyclin was detected also in complex with p21Cip1, both in overexpression models and in PELs. Phosphorylation of p21Cip1 on serine 130 (S130) site by v-cyclin-CDK6 functionally inactivated p21Cip1 and led to the circumvention of G1 arrest induced by p21Cip1. Moreover, p21Cip1 phosphorylated by v-cyclin-associated kinase showed reduced binding to CDK2, which provides a plausible explanation why p21Cip1 is unable to inhibit cell cycle progression upon v-cyclin expression. Our findings clarify the mechanisms on how v-cyclin evades the inhibition of cell cycle inhibitors and suggests an explanation to the uncontrolled proliferation of KSHV-infected cells.
Resumo:
The studies presented in this thesis aimed to a better understanding of the molecular biology of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus, Closteroviridae) and its role in the development of synergistic viral diseases. The emphasis was on the severe sweet potato virus disease (SPVD) that results from a synergistic interaction of SPCSV and Sweet potato feathery mottle virus (SPFMV, Potyvirus, Potyviridae). SPVD is the most important disease affecting sweetpotato. It is manifested as a significant increase in symptom severity and SPFMV titres. This is accompanied by a dramatic sweetpotato yield reduction. SPCSV titres remain little affected in the diseased plants. Viral synergistic interactions have been associated with the suppression of an adaptive general defence mechanism discovered in plants and known as RNA silencing. In the studies of this thesis two novel proteins (RNase3 and p22) identified in the genome of a Ugandan SPCSV isolate were shown to be involved in suppression of RNA silencing. RNase3 displayed a dsRNA-specific endonuclease activity that enhanced the RNA-silencing suppression activity of p22. Comparative analyses of criniviral genomes revealed variability in the gene content at the 3´end of the genomic RNA1. Molecular analyses of different isolates of SPCSV indicated a marked intraspecific heterogeneity in this region where the p22 and RNase3 genes are located. Isolates of the East African strain of SPCSV from Tanzania and Peru and an isolate from Israel were missing a 767-nt fragment that included the p22 gene. However, regardless of the absence of p22, all SPCSV isolates acted synergistically with SPFMV in co-infected sweetpotato, enhanced SPFMV titres and caused SPVD. These results showed that p22 is dispensable for development of SPVD. The role of RNase3 in SPVD was then studied by generating transgenic plants expressing the RNase3 protein. These plants had increased titres of SPFMV (ca. 600-fold higher in comparison with nontransgenic plants) 2-3 weeks after graft inoculation and displayed the characteristic SPVD symptoms. RNA silencing suppression (RSS) activity of RNase3 was detected in agroinfiltrated leaves of Nicotiana bethamiana. In vitro studies showed that RNase3 was able to cleave small interferring RNAs (siRNA) to products of ~14-nt. The data thus identified RNase3 as a suppressor of RNA silencing able to cleave siRNAs. RNase3 expression alone was sufficient for breaking down resistance to SPFMV in sweetpotato and for the development of SPVD. Similar RNase III-like genes exist in animal viruses which points out a novel and possibly more general mechanism of RSS by viruses. A reproducible method of sweetpotato transformation was used to target RNA silencing against the SPCSV polymerase region (RdRp) with an intron-spliced hairpin construct. Hence, engineered resistance to SPCSV was obtained. Ten out of 20 transgenic events challenged with SPCSV alone showed significantly reduced virus titres. This was however not sufficient to prevent SPVD upon coinfection with SPFMV. Immunity to SPCSV seems to be required to control SPVD and targeting of different SPCSV regions need to be assessed in further studies. Based on the identified key role of RNase3 in SPVD the possibility to design constructs that target this gene might prove more efficient in future studies.
Resumo:
Plus-stranded (plus) RNA viruses multiply within a cellular environment as tightly integrated units and rely on the genetic information carried within their genomes for multiplication and, hence, persistence. The minimal genomes of plus RNA viruses are unable to encode the molecular machineries that are required for virus multiplication. This sets requisites for the virus, which must form compatible interactions with host components during multiplication to successfully utilize primary metabolites as building blocks or metabolic energy, and to divert the protein synthesis machinery for production of viral proteins. In fact, the emerging picture of a virus-infected cell displays tight integration with the virus, from simple host and virus protein interactions through to major changes in the physiological state of the host cell. This study set out to develop a method for the identification of host components, mainly host proteins, that interact with proteins of Potato virus A (PVA; Potyvirus) during infection. This goal was approached by developing affinity-tag based methods for the purification of viral proteins complexed with associated host proteins from infected plants. Using this method, host membrane-associated viral ribonucleoprotein (RNP) complexes were obtained, and several host and viral proteins could be identified as components of these complexes. One of the host proteins identified using this strategy was a member of the heat shock protein 70 (HSP70) family, and this protein was chosen for further analysis. To enable the analysis of viral gene expression, a second method was developed based on Agrobacterium-mediated virus genome delivery into plant cells, and detection of virally expressed Renilla luciferase (RLUC) as a quantitative measure of viral gene expression. Using this method, it was observed that down-regulation of HSP70 caused a PVA coat protein (CP)-mediated defect associated with replication. Further experimentation suggested that CP can inhibit viral gene expression and that a distinct translational activity coupled to replication, referred to as replication-associated translation (RAT), exists. Unlike translation of replication-deficient viral RNA, RAT was dependent on HSP70 and its co-chaperone CPIP. HSP70 and CPIP together regulated CP turnover by promoting its modification by ubiquitin. Based on these results, an HSP70 and CPIP-driven mechanism that functions to regulate CP during viral RNA replication and/or translation is proposed, possibly to prevent premature particle assembly caused by CP association with viral RNA.
Resumo:
Molecular motors are proteins that convert chemical energy into mechanical work. The viral packaging ATPase P4 is a hexameric molecular motor that translocates RNA into preformed viral capsids. P4 belongs to the ubiquitous class of hexameric helicases. Although its structure is known, the mechanism of RNA translocation remains elusive. Here we present a detailed kinetic study of nucleotide binding, hydrolysis, and product release by P4. We propose a stochastic-sequential cooperative model to describe the coordination of ATP hydrolysis within the hexamer. In this model the apparent cooperativity is a result of hydrolysis stimulation by ATP and RNA binding to neighboring subunits rather than cooperative nucleotide binding. Simultaneous interaction of neighboring subunits with RNA makes the otherwise random hydrolysis sequential and processive. Further, we use hydrogen/deuterium exchange detected by high resolution mass spectrometry to visualize P4 conformational dynamics during the catalytic cycle. Concerted changes of exchange kinetics reveal a cooperative unit that dynamically links ATP binding sites and the central RNA binding channel. The cooperative unit is compatible with the structure-based model in which translocation is effected by conformational changes of a limited protein region. Deuterium labeling also discloses the transition state associated with RNA loading which proceeds via opening of the hexameric ring. Hydrogen/deuterium exchange is further used to delineate the interactions of the P4 hexamer with the viral procapsid. P4 associates with the procapsid via its C-terminal face. The interactions stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading. Finally, we use single molecule techniques to characterize P4 translocation along RNA. While the P4 hexamer encloses RNA topologically within the central channel, it diffuses randomly along the RNA. In the presence of ATP, unidirectional net movement is discernible in addition to the stochastic motion. The diffusion is hindered by activation energy barriers that depend on the nucleotide binding state. The results suggest that P4 employs an electrostatic clutch instead of cycling through stable, discrete, RNA binding states during translocation. Conformational changes coupled to ATP hydrolysis modify the electrostatic potential inside the central channel, which in turn biases RNA motion in one direction. Implications of the P4 model for other hexameric molecular motors are discussed.
Resumo:
Infection is a major cause of mortality and morbidity after thoracic organ transplantation. The aim of the present study was to evaluate the infectious complications after lung and heart transplantation, with a special emphasis on the usefulness of bronchoscopy and the demonstration of cytomegalovirus (CMV), human herpes virus (HHV)-6, and HHV-7. We reviewed all the consecutive bronchoscopies performed on heart transplant recipients (HTRs) from May 1988 to December 2001 (n = 44) and lung transplant recipients (LTRs) from February 1994 to November 2002 (n = 472). To compare different assays in the detection of CMV, a total of 21 thoracic organ transplant recipients were prospectively monitored by CMV pp65-antigenemia, DNAemia (PCR), and mRNAemia (NASBA) tests. The antigenemia test was the reference assay for therapeutic intervention. In addition to CMV antigenemia, 22 LTRs were monitored for HHV-6 and HHV-7 antigenemia. The diagnostic yield of the clinically indicated bronchoscopies was 41 % in the HTRs and 61 % in the LTRs. The utility of the bronchoscopy was highest from one to six months after transplantation. In contrast, the findings from the surveillance bronchoscopies performed on LTRs led to a change in the previous treatment in only 6 % of the cases. Pneumocystis carinii and CMV were the most commonly detected pathogens. Furthermore, 15 (65 %) of the P. carinii infections in the LTRs were detected during chemoprophylaxis. None of the complications of the bronchoscopies were fatal. Antigenemia, DNAemia, and mRNAemia were present in 98 %, 72 %, and 43 % of the CMV infections, respectively. The optimal DNAemia cut-off levels (sensitivity/specificity) were 400 (75.9/92.7 %), 850 (91.3/91.3 %), and 1250 (100/91.5 %) copies/ml for the antigenemia of 2, 5, and 10 pp65-positive leukocytes/50 000 leukocytes, respectively. The sensitivities of the NASBA were 25.9, 43.5, and 56.3 % in detecting the same cut-off levels. CMV DNAemia was detected in 93 % and mRNAemia in 61 % of the CMV antigenemias requiring antiviral therapy. HHV-6, HHV-7, and CMV antigenemia was detected in 20 (91 %), 11 (50 %), and 12 (55 %) of the 22 LTRs (median 16, 31, and 165 days), respectively. HHV-6 appeared in 15 (79 %), HHV-7 in seven (37 %), and CMV in one (7 %) of these patients during ganciclovir or valganciclovir prophylaxis. One case of pneumonitis and another of encephalitis were associated with HHV-6. In conclusion, bronchoscopy is a safe and useful diagnostic tool in LTRs and HTRs with a suspected respiratory infection, but the role of surveillance bronchoscopy in LTRs remains controversial. The PCR assay acts comparably with the antigenemia test in guiding the pre-emptive therapy against CMV when threshold levels of over 5 pp65-antigen positive leukocytes are used. In contrast, the low sensitivity of NASBA limits its usefulness. HHV-6 and HHV-7 activation is common after lung transplantation despite ganciclovir or valganciclovir prophylaxis, but clinical manifestations are infrequently linked to them.
Resumo:
Part I: Parkinson’s disease is a slowly progressive neurodegenerative disorder in which particularly the dopaminergic neurons of the substantia nigra pars compacta degenerate and die. Current conventional treatment is based on restraining symptoms but it has no effect on the progression of the disease. Gene therapy research has focused on the possibility of restoring the lost brain function by at least two means: substitution of critical enzymes needed for the synthesis of dopamine and slowing down the progression of the disease by supporting the functions of the remaining nigral dopaminergic neurons by neurotrophic factors. The striatal levels of enzymes such as tyrosine hydroxylase, dopadecarboxylase and GTP-CH1 are decreased as the disease progresses. By replacing one or all of the enzymes, dopamine levels in the striatum may be restored to normal and behavioral impairments caused by the disease may be ameliorated especially in the later stages of the disease. The neurotrophic factors glial cell derived neurotrophic factor (GDNF) and neurturin have shown to protect and restore functions of dopaminergic cell somas and terminals as well as improve behavior in animal lesion models. This therapy may be best suited at the early stages of the disease when there are more dopaminergic neurons for neurotrophic factors to reach. Viral vector-mediated gene transfer provides a tool to deliver proteins with complex structures into specific brain locations and provides long-term protein over-expression. Part II: The aim of our study was to investigate the effects of two orally dosed COMT inhibitors entacapone (10 and 30 mg/kg) and tolcapone (10 and 30 mg/kg) with a subsequent administration of a peripheral dopadecarboxylase inhibitor carbidopa (30 mg/kg) and L- dopa (30 mg/kg) on dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens of freely moving rats using dual-probe in vivo microdialysis. Earlier similarly designed studies have only been conducted in the dorsal striatum. We also confirmed the result of earlier ex vivo studies regarding the effects of intraperitoneally dosed tolcapone (30 mg/kg) and entacapone (30 mg/kg) on striatal and hepatic COMT activity. The results obtained from the dorsal striatum were generally in line with earlier studies, where tolcapone tended to increase dopamine and DOPAC levels and decrease HVA levels. Entacapone tended to keep striatal dopamine and HVA levels elevated longer than in controls and also tended to elevate the levels of DOPAC. Surprisingly in the nucleus accumbens, dopamine levels after either dose of entacapone or tolcapone were not elevated. Accumbal DOPAC levels, especially in the tolcapone 30 mg/kg group, were elevated nearly to the same extent as measured in the dorsal striatum. Entacapone 10 mg/kg elevated accumbal HVA levels more than the dose of 30 mg/kg and the effect was more pronounced in the nucleus accumbens than in the dorsal striatum. This suggests that entacapone 30 mg/kg has minor central effects. Also our ex vivo study results obtained from the dorsal striatum suggest that entacapone 30 mg/kg has minor and transient central effects, even though central HVA levels were not suppressed below those of the control group in either brain area in the microdialysis study. Both entacapone and tolcapone suppressed hepatic COMT activity more than striatal COMT activity. Tolcapone was more effective than entacapone in the dorsal striatum. The differences between dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens may be due to different properties of the two brain areas.
Resumo:
Acute encephalitis is an inflammation of the brain, mostly caused by viral infection. A variety of cognitive symptoms may persist after the acute stage, and neuropsychological assessment is crucial in evaluation of the outcome. The most commonly reported sequelae are memory deficits. The main aims of this study were to investigate the types of memory impairment in various encephalitides, the frequency of global amnesia following encephalitis, and the changes in the deficits during follow-up. Between 1 January 1985 and 31 December 1994, 77 adult patients under the age of 75 with acute encephalitis but without alcohol abuse, or coexisting or previous neurological diseases were consecutively referred for neuropsychological examination at the Department of Neurology, Helsinki University Central Hospital. The aetiology was established in 44/77 (57%) patients; 17 had Herpes simplex virus encephalitis (HSVE). Transient amnesia (TENA) at the acute stage of the disease was found in 70% of patients. Furthermore, similarly to brain trauma, TENA was found to indicate cognitive outcome. The frequency of persisting global amnesia syndrome with both anterograde and retrograde amnesia in all encephalitic patients was 6%. One patient had isolated retrograde amnesia, which is very rare. In HSVE the frequency of global amnesia was 12.5%, which is lower than expected. As a group, HSVE patients were not found to have a homogeneous pattern of amnesia, instead subgroups among all encephalitic patients were observed: some patients had impaired semantic memory, some had difficulty predominantly with executive functions and some suffered from an increased forgetting rate. Herpes zoster encephalitis was found to result in mild memory impairment only, and the qualitative features indicated a subcortical dysfunction. On the whole, the cognitive deficits were predominantly found to diminish during follow-up. Progressive deterioration was often associated with intractable epilepsy. The frequency of dementia was 12.5%. In conclusion, the neuropsychological outcome, especially in HSVE, was more favourable than has previously been reported, possibly due to early acyclovir medication. Memory disorders after encephalitis should not be considered uniform, and the need for neuropsychological rehabilitation should be considered case-by-case
Resumo:
Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.
Resumo:
Probiooteilla kantakohtaisia vaikutuksia ihmisen immuunijärjestelmään terveillä aikuisilla Probiooteilla on kantakohtaisia tulehduksen välittäjäaineita vähentäviä vaikutuksia ja probioottien yhdistelmien vaikutukset eroavat yksittäisten kantojen vaikutuksista selviää TtM Riina Kekkosen tuoreesta väitöstutkimuksesta. TtM Riina Kekkonen on selvittänyt väitöskirjassaan eri probioottikantojen vaikutuksia immuunivasteeseen valkosolumallissa sekä terveillä aikuisilla lumekontrolloiduissa kliinisissä tutkimuksissa. Aikaisemmin probioottien vaikutuksia on tutkittu lähinnä allergian ja erilaisten vatsavaivojen ehkäisyssä ja hoidossa. Probiootteja sisältäviä tuotteita käyttävät kuluttajat ovat kuitenkin useimmiten terveitä aikuisia, ja probioottien vaikutus terveiden aikuisten immuunijärjestelmään on ollut puutteellisesti selvitettyä. Valkosolumallissa probioottikantojen havaittiin poikkeavan toisistaan niiden kyvyssä aktivoida immuunivasteen välittäjäaineiden, sytokiinien, tuotantoa. Anti-inflammatorisia, eli tulehdusta lievittäviä vaikutuksia nähtiin lähinnä Bifidobacterium ja Propionibacterium sukuihin kuuluvilla kannoilla. Streptococcus ja Leuconostoc sukuihin kuuluvat kannat puolestaan aktivoivat Th1 tyyppistä, soluvälitteistä immuunivastetta. Eri probioottien kombinaatiot eivät saaneet aikaan voimakkaampaa aktivaatiota yksittäisiin kantoihin verrattuna, joka viittaa probioottien keskinäiseen kilpailuun niiden ollessa kontaktissa ihmisen solujen kanssa. Probioottikantojen valinta kliinisiin tutkimuksiin tehtiin niiden anti-inflammatoristen ominaisuuksien perusteella. Parhaita anti-inflammatorisia kantoja olivat B. lactis ssp. animalis Bb12 ja P. freudenreichii ssp. shermanii JS, joiden lisäksi tutkimuksiin valittiin myös L. rhamnosus GG (LGG) hyvin tutkittuna referenssikantana. Solutöiden tulokset eivät olleet täysin verrannollisia kliinisen työn tuloksiin, koska LGG näytti omaavan parhaat anti-inflammatoriset ominaisuudet kliinisissä tutkimuksissa vaikka solutyössä sen aikaansaamat vasteet olivat melko vaimeita. Kolmen viikon kliinisessä tutkimuksessa terveillä aikuisilla LGG alensi mm. tulehdusta kuvaavan C-reaktiivisen proteiinin ja inflammatoristen sytokiinien määrää. Pidemmässä kolmen kuukauden pituisessa kliinisessä tutkimuksessa LGG:llä ei ollut vaikutusta terveiden aikuisten infektiosairastavuuteen, mutta LGG lyhensi vatsavaivojen kestoa. Probioottien vaikutukset immuunijärjestelmään näyttävät olevan kantakohtaisia ja erityisesti Lactobacillus rhamnosus GG:llä havaittiin anti-inflammatorisia vaikutuksia. Valkosolumallia ei tulisi käyttää ainoana probioottikantojen skriinausmenetelmänä niiden immunologisia vaikutuksia selvitettäessä, koska solutöiden tulokset eivät olleet täysin verrannollisia kliinisten tutkimusten tuloksiin. Sen sijaan veren perifeeristen lymfosyyttien eristäminen ja niiden aktivoitumisen selvittäminen lyhytaikaisessa kliinisessä tutkimuksessa voisi toimia suhteellisen helppona skiinausmenetelmänä.
Resumo:
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the causative agent of three human malignancies: Kaposi's sarcoma (KS), Multicentric Castleman's Disease (MCD), and primary effusion lymphoma (PEL). In tumors, KSHV establishes latent infection during which it produces no infectious particles. Latently infected cells can enter the lytic replication cycle, and upon provision of appropriate cellular signals, produce progeny virus. PEL, commonly described in patients with AIDS, represents a diffuse large-cell non-Hodgkin's lymphoma, with median survival time less than six months after diagnosis. As tumor suppressor gene TP53 mutations occur rarely in PEL, the aim of this thesis was to investigate whether non-genotoxic activation of the p53 pathway can eradicate malignant PEL cells. This thesis demonstrates that Nutlin-3, a small-molecule inhibitor of the p53-MDM2 interaction, efficiently restored p53 function in PEL cells, leading to cell cycle arrest and massive apoptosis. Furthermore, we found that KSHV infection activated DNA damage signaling, rendering the cells more sensitive to p53-dependent cell death. We also showed in vivo the therapeutic potential of p53 restoration that led to regression of subcutaneous and intraperitoneal PEL tumor xenografts without adversely affecting normal cells. Importantly, we demonstrated that in a small subset of intraperitoneal PEL tumors, spontaneous induction of viral reactivation dramatically impaired Nutlin-3-induced p53-mediated apoptosis. Accordingly, we found that elevated KSHV lytic transcripts correlated with PEL tumor burden in animals and that inhibition of viral reactivation in vitro restored cytotoxic activity of a small-molecule inhibitor of the p53-MDM2 interaction. Latency provides a unique opportunity for KSHV to escape host immune surveillance and to establish persistent infections. However, to maintain viral reservoirs and spread to other hosts, KSHV must be reactivated from latency and enter into the lytic growth phase. We showed that phosphorylation of nucleolar phosphoprotein nucleophosmin (NPM) by viral cyclin-CDK6 is critical for establishment and maintenance of the KSHV latency. In short, this study provides evidence that the switch between latent phase and lytic replication is a critical step that determines the outcome of viral infection and the pathogenesis of KSHV-induced malignancies. Our data may thus contribute to development of novel targeted therapies for intervention and treatment of KSHV-associated cancers.
Resumo:
Infection by Epstein-Barr virus (EBV) occurs in approximately 95% of the world s population. EBV was the first human virus implicated in oncogenesis. Characteristic for EBV primary infection are detectable IgM and IgG antibodies against viral capsid antigen (VCA). During convalescence the VCA IgM disappears while the VCA IgG persists for life. Reactivations of EBV occur both among immunocompromised and immunocompetent individuals. In serological diagnosis, measurement of avidity of VCA IgG separates primary from secondary infections. However, in serodiagnosis of mononucleosis it is quite common to encounter, paradoxically, VCA IgM together with high-avidity VCA IgG, indicating past immunity. We determined the etiology of this phenomenon and found that, among patients with cytomegalovirus (CMV) primary infection a large proportion (23%) showed antibody profiles of EBV reactivation. In contrast, EBV primary infection did not appear to induce immunoreactivation of CMV. EBV-associated post-transplant lymphoproliferative disease (PTLD) is a life threatening complication of allogeneic stem cell or solid organ transplantation. PTLD may present with a diverse spectrum of clinical symptoms and signs. Due to rapidity of PTLD progression especially after stem cell transplantation, the diagnosis must be obtained quickly. Pending timely detection, the evolution of the fatal disease may be halted by reduction of immunosuppression. A promising new PTLD treatment (also in Finland) is based on anti-CD-20 monoclonal antibodies. Diagnosis of PTLD has been demanding because of immunosuppression, blood transfusions and the latent nature of the virus. We set up in 1999 to our knowledge first in Finland for any microbial pathogen a real-time quantitative PCR (qPCR) for detection of EBV DNA in blood serum/plasma. In addition, we set up an in situ hybridisation assay for EBV RNA in tissue sections. In collaboration with a group of haematologists at Helsinki University Central Hospital we retrospectively determined the incidence of PTLD among 257 allogenic stem cell transplantations (SCT) performed during 1994-1999. Post-mortem analysis revealed 18 cases of PTLD. From a subset of PTLD cases (12/18) and a series of corresponding controls (36), consecutive samples of serum were studied by the new EBV-qPCR. All the PTLD patients were positive for EBV-DNA with progressively rising copy numbers. In most PTLD patients EBV DNA became detectable within 70 days of SCT. Of note, the appearance of EBV DNA preceded the PTLD symptoms (fever, lymphadenopathy, atypical lymphocytes). Among the SCT controls, EBV DNA occurred only sporadically, and the EBV-DNA levels remained relatively low. We concluded that EBV qPCR is a highly sensitive (100%) and specific (96%) new diagnostic approach. We also looked for and found risk factors for the development of PTLD. Together with a liver transplantation group at the Transplantation and Liver Surgery Clinic we wanted to clarify how often and how severely do EBV infections occur after liver transplantation. We studied by the EBV qPCR 1284 plasma samples obtained from 105 adult liver transplant recipients. EBV DNA was detected in 14 patients (13%) during the first 12 months. The peak viral loads of 13 asymptomatic patients were relatively low (<6600/ml), and EBV DNA subsided quickly from circulation. Fatal PTLD was diagnosed in one patient. Finally, we wanted to determine the number and clinical significance of EBV infections of various types occurring among a large, retrospective, nonselected cohort of allogenic SCT recipients. We analysed by EBV qPCR 5479 serum samples of 406 SCT recipients obtained during 1988-1999. EBV DNA was seen in 57 (14%) patients, of whom 22 (5%) showed progressively rising and ultimately high levels of EBV DNA (median 54 million /ml). Among the SCT survivors, EBV DNA was transiently detectable in 19 (5%) asymptomatic patients. Thereby, low-level EBV-DNA positivity in serum occurs relatively often after SCT and may subside without specific treatment. However, high molecular copy numbers (>50 000) are diagnostic for life-threatening EBV infection. We furthermore developed a mathematical algorithm for the prediction of development of life-threatening EBV infection.
Resumo:
Virotherapy, the use of oncolytic properties of viruses for eradication of tumor cells, is an attractive strategy for treating cancers resistant to traditional modalities. Adenoviruses can be genetically modified to selectively replicate in and destroy tumor cells through exploitation of molecular differences between normal and cancer cells. The lytic life cycle of adenoviruses results in oncolysis of infected cells and spreading of virus progeny to surrounding cells. In this study, we evaluated different strategies for improving safety and efficacy of oncolytic virotherapy against human ovarian adenocarcinoma. We examined the antitumor efficacy of Ad5/3-Δ24, a serotype 3 receptor-targeted pRb-p16 pathway-selective oncolytic adenovirus, in combination with conventional chemotherapeutic agents. We observed synergistic activity in ovarian cancer cells when Ad5/3-Δ24 was given with either gemcitabine or epirubicin, common second-line treatment options for ovarian cancer. Our results also indicate that gemcitabine reduces the initial rate of Ad5/3-Δ24 replication without affecting the total amount of virus produced. In an orthotopic murine model of peritoneally disseminated ovarian cancer, combining Ad5/3-Δ24 with either gemcitabine or epirubicin resulted in greater therapeutic benefit than either agent alone. Another useful approach for increasing the efficacy of oncolytic agents is to arm viruses with therapeutic transgenes such as genes encoding prodrug-converting enzymes. We constructed Ad5/3-Δ24-TK-GFP, an oncolytic adenovirus encoding the thymidine kinase (TK) green fluorescent protein (GFP) fusion protein. This novel virus replicated efficiently on ovarian cancer cells, which correlated with increased GFP expression. Delivery of prodrug ganciclovir (GCV) immediately after infection abrogated viral replication, which might have utility as a safety switch mechanism. Oncolytic potency in vitro was enhanced by GCV in one cell line, and the interaction was not dependent on scheduling of the treatments. However, in murine models of metastatic ovarian cancer, administration of GCV did not add therapeutic benefit to this highly potent oncolytic agent. Detection of tumor progression and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis in living mice. For optimizing protocols for upcoming clinical trials, we utilized orthotopic murine models of ovarian cancer to analyze the effect of dose and scheduling of intraperitoneally delivered Ad5/3-Δ24. Weekly administration of Ad5/3-Δ24 did not significantly enhance antitumor efficacy over a single treatment. Our results also demonstrate that even a single intraperitoneal injection of only 100 viral particles significantly increased the survival of mice compared with untreated animals. Improved knowledge of adenovirus biology has resulted in creation of more effective oncolytic agents. However, with more potent therapy regimens an increase in unwanted side-effects is also possible. Therefore, inhibiting viral replication when necessary would be beneficial. We evaluated the antiviral activity of chlorpromazine and apigenin on adenovirus replication and associated toxicity in fresh human liver samples, normal cells, and ovarian cancer cells. Further, human xenografts in mice were utilized to evaluate antitumor efficacy, viral replication, and liver toxicity. Our data suggest that these agents can reduce replication of adenoviruses, which could provide a safety switch in case of replication-associated side-effects. In conclusion, we demonstrate that Ad5/3-Δ24 is a useful oncolytic agent for treatment of ovarian cancer either alone or in combination with conventional chemotherapeutic drugs. Insertion of genes encoding prodrug-converting enzymes into the genome of Ad5/3-Δ24 might not lead to enhanced antitumor efficacy with this highly potent oncolytic virus. As a safety feature, viral activity can be inhibited with pharmacological substances. Clinical trials are however needed to confirm if these preclinical results can be translated into efficacy in humans. Promising safety data seen here, and in previous publications suggest that clinical evaluation of the agent is feasible.