26 resultados para temperature sensitive
em Helda - Digital Repository of University of Helsinki
Resumo:
The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.
Resumo:
The temperature sensitivity of decomposition of different soil organic matter (SOM) fractions was studied with laboratory incubations using 13C and 14C isotopes to differentiate between SOM of different age. The quality of SOM and the functionality and composition of microbial communities in soils formed under different climatic conditions were also studied. Transferring of organic layers from a colder to a warmer climate was used to assess how changing climate, litter input and soil biology will affect soil respiration and its temperature sensitivity. Together, these studies gave a consistent picture on how warming climate will affect the decomposition of different SOM fractions in Finnish forest soils: the most labile C was least temperature sensitive, indicating that it is utilized irrespective of temperature. The decomposition of intermediate C, with mean residence times from some years to decades, was found to be highly temperature sensitive. Even older, centennially cycling C was again less temperature sensitive, indicating that different stabilizing mechanisms were limiting its decomposition even at higher temperatures. Because the highly temperature sensitive, decadally cycling C, forms a major part of SOM stock in the organic layers of the studied forest soils, these results mean that these soils could lose more carbon during the coming years and decades than estimated earlier. SOM decomposition in boreal forest soils is likely to increase more in response to climate warming, compared to temperate or tropical soils, also because the Q10 is temperature dependent. In the northern soils the warming will occur at a lower temperature range, where Q10 is higher, and a similar increase in temperature causes a higher relative increase in respiration rates. The Q10 at low temperatures was found to be inversely related to SOM quality. At higher temperatures respiration was increasingly limited by low substrate availability.
Resumo:
Kontrolloidut radikaalipolymerointimenetelmät, kuten RAFT-polymerointi, ovat moderni tapa valmistaa polymeerejä säädellysti. RAFT-polymeroinnilla polymeerien ketjunpituutta, moolimassajakaumaa, mikrorakennetta (taktisuus, järjestys), koostumusta ja funktionaalisuutta kyetään hallitsemaan. Siten menetelmällä voidaan valmistaa uudenlaisia polymeeriarkkitektuureja, kuten blokki- ja tähtipolymeerejä, sekä hybridimateriaaleja ja biokonjugaatteja. Polymeeristen rakennuspalikoiden itsejärjestyminen, missä huolellisesti syntetisoidut polymeerit järjestyvät halutulla tavalla nanoskaalassa, on suosittu tutkimuskohde materiaalitieteessä. On huomattava, että blokkipolymeerien itsejärjestyminen on vielä suhteellisen nuori tutkimusaihe. Tämän hetkiset polymeeriset nanomateriaalit ovat suhteellisen yksinkertaisia luonnon luomuksiin verrattuina, tarjoten jatkuvasti uusia mahdollisuuksia seuraavan sukupolven polymeereille. Tässä työssä RAFT-polymeroinnilla syntetisoitiin amfifiilisiä di- ja triblokkikopolymeerejä sekä tutkittiin niiden järjestymistä nanorakenteiksi. Kaikissa blokkikopolymeereissä käytettiin lämpöherkkää poly(N-isopropyyliakryyliamidia). Siten polymeerit ja tutkitut materiaalit reagoivat lämpötilanmuutokseen ympäristössä eli ovat ns. ympäristöherkkiä. Työssä tutkittiin taktisuuden kontrollointia N-isopropyyliakryyliamidin RAFT-polymeroinnissa. Polymeerin taktisuutta sekä ketjunpituutta ja blokkijärjestystä säätämällä voitiin hallita polymeerin itsejärjestymistä vesiliuoksessa. Amfifiiliset polymeerit järjestyivät laimeissa vesiliuoksissa erilaisiksi misellirakenteiksi, muodostaen ns. mikrosäiliöitä. Tällaisilla polymeereillä odotetaan olevan sovelluksia esim. lääkeainevapautuksessa. Amfifiilejä käytetään myös esimerkiksi apuaineina pinnoitteissa ja kosmetiikassa. Kiinteässä tilassa tutkitut triblokkikopolymeerit muodostivat teoreettisesti ennustettuja morfologioita. Lämpöherkän materiaalin hydrogeelit toimivat suodatinmembraanina nanokokoluokassa. RAFT-polymeroinnilla syntetisoituja polymeereja voidaan sellaisenaan käyttää kultananopartikkeleiden päällystämiseen. Kultananopartikkelit ovat erittäin kiinostavia mm. niiden stabiilisuuden ja ainutlaatuisten pintaominaisuuksien vuoksi. Kun amfifiilisiä polymeerejä kiinnitettiin kultapartikkelin pinnalle, sen liuos- ja optisia ominaisuuksia voitiin säädellä pH:n ja lämpötilan avulla. Tällaisilla kultananopartikkeleilla on sovelluksia mm. diagnostiikassa, sensoreina ja solukuvauksessa.
Resumo:
Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic fungus, Helminthosporium turcicum, to hygromycin B resistance. Small GTPases Cdc42 and Rac1, the regulators of actin cytoskeleton in eukaryotes were isolated from S. bovinus. Sbcdc42 and Sbrac1, are both expressed in vegetative and in the symbiotic hyphae of S. bovinus . Using IIF microscopy, Cdc42 and actin were co-localized at the tips of vegetative hyphae and were visualized in association with the plasma membrane in swollen cells typical to the symbiotic hyphae. These results suggest that the small GTPases Cdc42 may play a significant role in the polarized growth of S. bovinus hyphae and regulate fungal morphogenesis during ectomycorrhiza formation through reorganization of the actin cytoskeleton. The functional equality of Cdc42 was tested in yeast complementation experiments using a Saccharomyces cerevisiae temperature sensitive mutant, cdc42-1ts. The genomic clone of CDC42 was isolated from S. bovinus genomic DNA via specific primers for Cdc42. The analogous S. cerevisiae cdc42 mutations, dominant active G12V and dominant negative D118A, were generated in the Sbcdc42 gene by in-vitro mutagenesis. The ectomycorrhizal fungi, S. bovinus, P. involutus and H. cylindroporum were transformed using ATMT and phleomycin as a selectable marker. PCR screeing suggested that the T-DNA was inserted in all the three fungal genomes but the fate of integration could not be proved by Southern blot analysis. An alternative Agrobacterium strain, AGL-1 and selection marker, hygromycin was used to transform our model fungus S. bovinus. PCR and Southern analysis suggested an improved efficiency of transformation. All the transformed fungal colonies selected for hygromycin gave positives in PCR and the Southerns showed multiple or single copy T-DNA integrations into the S. bovinus genome. Using the same Agrobacterium strain and the selectable marker, a maize pathogen, H. turcicum was also subjected to ATMT. The H. turcicum transformation data suggested the single copy T-DNA integrations into the genome of the screened transformants that further confirms wider applicability of the ATMT. The plasmids carrying the wild-type (pHGCDC42) and the mutated Sbcdc42 alleles (pHGGV; pHGDA) under Agaricus bisporus gpd promoter were constructed in an A. tumefaciens vector. ATMT was used to transform S. bovinus with the plasmids carrying the wild-type and mutated Sbcdc42 alleles. The isolation of Sbcdc42 and Sbrac1 genes and some other functionally related genes from ectomycorrhizal fungus, S. bovinus will form the basis of future work to resolve the signalling pathway leading to ectomycorrhizal symbiosis. The development of ATMT system will be a valuable tool in analysing the exact function of signalling pathway components in ectomycorrhizal symbiosis or in plant pathogenic interactions. The transformation frequency and broad applicability along with the simplicity of T-DNA integration make Agrobacterium a valuable, new and a powerfull tool for targeted and insertional mutagenesis in these plant associated fungi. The developed ATMT systems should therefore make it possible to generate large number of transformants with tagged genes which could then be screened for their specific roles in symbiosis and pathogenecity, respectively.
Resumo:
Eukaryotic cells are characterized by having a subset of internal membrane compartments, each one with a specifi c identity, structure and function. Proteins destined to be targeted to the exterior of the cell need to enter and progress through the secretory pathway. Transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi takes place by the selective packaging of proteins into COPII-coated vesicles at the ER membrane. Taking advantage of the extensive genetic tools available for S. cerevisiae we found that Hsp150, a yeast secretory glycoprotein, selectively exited the ER in the absence of any of the three Sec24p family members. Sec24p has been thought to be an essential component of the COPII coat and thus indispensable for exocytic membrane traffic. Next we analyzed the ability of Hsp150 to be secreted in mutants, where post-Golgi transport is temperature sensitive. We found that Hsp150 could be selectively secreted under conditions where the exocyst component Sec15p is defective. Analysis of the secretory vesicles revealed that Hsp150 was packaged into a subset of known secretory vesicles as well as in a novel pool of secretory vesicles at the level of the Golgi. Secretion of Hsp150 in the absence of Sec15p function was dependent of Mso1p, a protein capable of interacting with vesicles intended to fuse with the plasma membrane, with the SNARE machinery and with Sec1p. This work demonstrated that Hsp150 is capable of using alternative secretory pathways in ER-to-Golgi and Golgi-to-plasma membrane traffi c. The sorting signals, used at both stages of the secretory pathway, for secretion of Hsp150 were different, revealing the highly dynamic nature and spatial organization of the secretory pathway. Foreign proteins usually misfold in the yeast ER. We used Hsp150 as a carrier to assist folding and transport of heterologous proteins though the secretory pathway to the culture medium in both S. cerevisiae and P. pastoris. Using this technique we expressed Hsp150Δ-HRP and developed a staining procedure, which allowed the visualization of the organelles of the secretory pathway of S. cerevisiae.
Resumo:
Transposons, mobile genetic elements that are ubiquitous in all living organisms have been used as tools in molecular biology for decades. They have the ability to move into discrete DNA locations with no apparent homology to the target site. The utility of transposons as molecular tools is based on their ability to integrate into various DNA sequences efficiently, producing extensive mutant clone libraries that can be used in various molecular biology applications. Bacteriophage Mu is one of the most useful transposons due to its well-characterized and simple in vitro transposition reaction. This study establishes the properties of the Mu in vitro transposition system as a versatile multipurpose tool in molecular biology. In addition, this study describes Mu-based applications for engineering proteins by random insertional transposon mutagenesis in order to study structure-function relationships in proteins. We initially characterized the properties of the minimal Mu in vitro transposition system. We showed that the Mu transposition system works efficiently and accurately and produces insertions into a wide spectrum of target sites in different DNA molecules. Then, we developed a pentapeptide insertion mutagenesis strategy for inserting random five amino acid cassettes into proteins. These protein variants can be used especially for screening important sites for protein-protein interactions. Also, the system may produce temperature-sensitive variants of the protein of interest. Furthermore, we developed an efficient screening system for high-resolution mapping of protein-protein interfaces with the pentapeptide insertion mutagenesis. This was accomplished by combining the mutagenesis with subsequent yeast two-hybrid screening and PCR-based genetic footprinting. This combination allows the analysis of the whole mutant library en masse, without the need for producing or isolating separate mutant clones, and the protein-protein interfaces can be determined at amino acid accuracy. The system was validated by analysing the interacting region of JFC1 with Rab8A, and we show that the interaction is mediated via the JFC1 Slp homology domain. In addition, we developed a procedure for the production of nested sets of N- and C-terminal deletion variants of proteins with the Mu system. These variants are useful in many functional studies of proteins, especially in mapping regions involved in protein-protein interactions. This methodology was validated by analysing the region in yeast Mso1 involved in an interaction with Sec1. The results of this study show that the Mu in vitro transposition system is versatile for various applicational purposes and can efficiently be adapted to random protein engineering applications for functional studies of proteins.
Resumo:
Intracellular membrane alterations are hallmarks of positive-sense RNA (+RNA) virus replication. Strong evidence indicates that within these exotic compartments, viral replicase proteins engage in RNA genome replication and transcription. To date, fundamental questions such as the origin of altered membranes, mechanisms of membrane deformation and topological distribution and function of viral components, are still waiting for comprehensive answers. This study addressed some of the above mentioned questions for the membrane alterations induced during Semliki Forest virus (SFV) infection of mammalian cells. With the aid of electron and fluorescence microscopy coupled with radioactive labelling and immuno-cytochemistry techniques, our group and others showed that few hours after infection the four non structural proteins (nsP1-4) and newly synthesized RNAs of SFV colocalized in close proximity of small membrane invaginations, designated as spherules . These 50-70 nm structures were mainly detected in the perinuclear area, at the limiting membrane of modified endosomes and lysosomes, named CPV-I (cytopathic vacuoles type I). More rarely, spherules were also found at the plasma membrane (PM). In the first part of this study I present the first three-dimensional reconstruction of the CPV-I and the spherules, obtained by electron tomography after chemical or cryo-fixation. Different approaches for imaging these macromolecular assemblies to obtain better structure preservation and higher resolution are presented as unpublished data. This study provides insights into spherule organization and distribution of viral components. The results of this and other experiments presented in this thesis will challenge currently accepted models for virus replication complex formation and function. In a revisitation of our previous models, the second part of this work provides the first complete description of the biogenesis of the CPV-I. The results demonstrate that these virus-induced vacuoles, where hundreds of spherules accumulate at late stages during infection, represent the final phase of a journey initiated at the PM, which apparently serves as a platform for spherule formation. From the PM spherules were internalized by an endocytic event that required the activity of the class I PI3K, caveolin-1, cellular cholesterol and functional actin-myosin network. The resulting neutral endocytic carrier vesicle delivered the spherules to the membrane of pre-existing acidic endosomes via multiple fusion events. Microtubule based transport supported the vectorial transfer of these intermediates to the pericentriolar area where further fusions generated the CPV-I. A signal for spherule internalization was identified in one of the replicase proteins, nsP3. Infections of cells with viruses harbouring a deletion in a highly phosphorylated region of nsP3 did not result in the formation of CPV-Is. Instead, thousands of spherules remained at the PM throughout the infection cycle. Finally, the role of the replicase protein nsP2 during viral RNA replication and transcription was investigated. Three enzymatic activities, protease, NTPase and RNA-triphosphatase were studied with the aid of temperature sensitive mutants in vitro and, when possible, in vivo. The results highlighted the interplay of the different nsP2 functions during different steps of RNA replication and sub-genomic promoter regulation, and suggest that the protein could have different activities when participating in the replication complex or as a free enzyme.
Resumo:
Sec1/Munc18 (SM) protein family members are evolutionary conserved proteins. They perform an essential, albeit poorly understood function in SNARE complex formation in membrane fusion. In addition to the SNARE complex components, only a few SM protein binding proteins are known. Typically, their binding modes to SM proteins and their contribution to the membrane fusion regulation is poorly characterised. We identified Mso1p as a novel Sec1p interacting partner. It was shown that Mso1p and Sec1p interact at sites of polarised secretion and that this localisation is dependent on the Rab GTPase Sec4p and its GEF Sec2p. Using targeted mutagenesis and N- and C-terminal deletants, it was discovered that the interaction between an N-terminal peptide of Mso1p and the putative Syntaxin N-peptide binding area in Sec1p domain 1 is important for membrane fusion regulation. The yeast Syntaxin homologues Sso1p and Sso2p lack the N-terminal peptide. Our results show that in addition to binding to the putative N-peptide binding area in Sec1p, Mso1p can interact with Sso1p and Sso2p. This result suggests that Mso1p can mimic the N-peptide binding to facilitate membrane fusion. In addition to Mso1p, a novel role in membrane fusion regulation was revealed for the Sec1p C-terminal tail, which is missing in its mammalian homologues. Deletion of the Sec1p-tail results in temperature sensitive growth and reduced sporulation. Using in vivo and in vitro experiments, it was shown that the Sec1p-tail mediates SNARE complex binding and assembly. These results propose a regulatory role for the Sec1p-tail in SNARE complex formation. Furthermore, two novel interaction partners for Mso1p, the Rab GTPase Sec4p and plasma membrane phospholipids, were identified. The Sec4p link was identified using Bimolecular Fluorescence Complementation assays with Mso1p and the non-SNARE binding Sec1p(1-657). The assay revealed that Mso1p can target Sec1p(1-657) to sites of secretion. This effect is mediated via the Mso1p C-terminus, which previously has been genetically linked to Sec4p. These results and in vitro binding experiments suggest that Mso1p acts in cooperation with the GTP-bound form of Sec4p on vesicle-like structures prior to membrane fusion. Mso1p shares homology with the PIP2 binding domain of the mammalian Munc18 binding Mint proteins. It was shown both in vivo and in vitro that Mso1p is a phospholipid inserting protein and that this insertion is mediated by the conserved Mso1p amino terminus. In vivo, the Mso1p phospholipid binding is needed for sporulation and Mso1p-Sec1p localisation at the sites of secretion at the plasma membrane. The results reveal a novel layer of membrane fusion regulation in exocytosis and propose a coordinating role for Mso1p in connection with membrane lipids, Sec1p, Sec4p and SNARE complexes in this process.
Resumo:
The effect of temperature on height growth of Scots pine in the northern boreal zone in Lapland was studied in two different time scales. Intra-annual growth was monitored in four stands in up to four growing seasons using an approximately biweekly measurement interval. Inter-annual growth was studied using growth records representing seven stands and five geographical locations. All the stands were growing on a dry to semi-dry heath that is a typical site type for pine stands in Finland. The applied methodology is based on applied time-series analysis and multilevel modelling. Intra-annual elongation of the leader shoot correlated with temperature sum accumulation. Height growth ceased when, on average, 41% of the relative temperature sum of the site was achieved (observed minimum and maximum were 38% and 43%). The relative temperature sum was calculated by dividing the actual temperature sum by the long-term mean of the total annual temperature sum for the site. Our results suggest that annual height growth ceases when a location-specific temperature sum threshold is attained. The positive effect of the mean July temperature of the previous year on annual height increment proved to be very strong at high latitudes. The mean November temperature of the year before the previous had a statistically significantly effect on height increment in the three northernmost stands. The effect of mean monthly precipitation on annual height growth was statistically insignificant. There was a non-linear dependence between length and needle density of annual shoots. Exceptionally low height growth results in high needle-density, but the effect is weaker in years of average or good height growth. Radial growth and next year s height growth are both largely controlled by current July temperature. Nevertheless, their growth variation in terms of minimum and maximum is not necessarily strongly correlated. This is partly because height growth is more sensitive to changes in temperature. In addition, the actual effective temperature period is not exactly the same for these two growth components. Yet, there is a long-term balance that was also statistically distinguishable; radial growth correlated significantly with height growth with a lag of 2 years. Temperature periods shorter than a month are more effective variables than mean monthly values, but the improvement is on the scale of modest to good when applying Julian days or growing-degree-days as pointers.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
The number of drug substances in formulation development in the pharmaceutical industry is increasing. Some of these are amorphous drugs and have glass transition below ambient temperature, and thus they are usually difficult to formulate and handle. One reason for this is the reduced viscosity, related to the stickiness of the drug, that makes them complicated to handle in unit operations. Thus, the aim in this thesis was to develop a new processing method for a sticky amorphous model material. Furthermore, model materials were characterised before and after formulation, using several characterisation methods, to understand more precisely the prerequisites for physical stability of amorphous state against crystallisation. The model materials used were monoclinic paracetamol and citric acid anhydrate. Amorphous materials were prepared by melt quenching or by ethanol evaporation methods. The melt blends were found to have slightly higher viscosity than the ethanol evaporated materials. However, melt produced materials crystallised more easily upon consecutive shearing than ethanol evaporated materials. The only material that did not crystallise during shearing was a 50/50 (w/w, %) blend regardless of the preparation method and it was physically stable at least two years in dry conditions. Shearing at varying temperatures was established to measure the physical stability of amorphous materials in processing and storage conditions. The actual physical stability of the blends was better than the pure amorphous materials at ambient temperature. Molecular mobility was not related to the physical stability of the amorphous blends, observed as crystallisation. Molecular mobility of the 50/50 blend derived from a spectral linewidth as a function of temperature using solid state NMR correlated better with the molecular mobility derived from a rheometer than that of differential scanning calorimetry data. Based on the results obtained, the effect of molecular interactions, thermodynamic driving force and miscibility of the blends are discussed as the key factors to stabilise the blends. The stickiness was found to be affected glass transition and viscosity. Ultrasound extrusion and cutting were successfully tested to increase the processability of sticky material. Furthermore, it was found to be possible to process the physically stable 50/50 blend in a supercooled liquid state instead of a glassy state. The method was not found to accelerate the crystallisation. This may open up new possibilities to process amorphous materials that are otherwise impossible to manufacture into solid dosage forms.
Resumo:
Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.
Resumo:
The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.
Resumo:
Continuous growth in the number of immigrant students has changed the Finnish school environment. The resulting multicultural school environment is new for both teachers and students. In order to develop multicultural learning environments, there is a need to understand immigrant students everyday lives in school. In this study, home economics is seen as a fruitful school subject area for understanding these immigrant students lives as they cope with school and home cultures that may be very different from each other. Home economics includes a great deal of knowledge and skills that immigrant students need during their everyday activities outside of school. -- The main aim of the study is to clarify the characteristics of multicultural home economics classroom practices and the multicultural contacts and interaction that take place between the students and the teacher. The study includes four parts. The first part, an ethnographical prestudy, aims to understand the challenges of multicultural schoolwork with the aid of ethnographical fieldwork done in one multicultural school. The second part outlines the theoretical frames of the study and focuses on the sociocultural approach. The third part of the study presents an analysis of videodata collected in a multicultural home economics classroom. The teacher s and students interaction in the home economics classroom is analyzed through the concepts of the sociocultural approach and the cultural-historical activity theory. Firstly, this is done by analyzing the focusedness of the teacher s and the students actions as well as the questions presented and apparent disturbances during classroom interaction. Secondly, the immigrant students everyday experiences and cultural background are examined as they appear during discussions in the home economics lessons. Thirdly, the teacher s tool-use and actions as a human mediator are clarified during interaction in the classroom. The fourth part presents the results, according to which a practice-based approach in the multicultural classroom situation is a prerequisite for the teacher s and the students shared object during classroom interaction. Also, the practice-based approach facilitates students understanding during teaching and learning situations. Practice in this study is understood as collaborative teaching and learning situations that include 1) guided activating learning, 2) establishing connections with students everyday lives and 3) multiple tool-use. Guided activating learning in the classroom is defined as situations that occur and assignments that are done with a knowledgeable adult or peer and include action. The teacher s demonstrations during the practical part of the lessons seemed to be fruitful in the teaching and learning situations in the multicultural classroom. Establishing connections with students everyday lives motivated students to follow the lesson and supported understanding of meaning. Furthermore, if multiple tools (both psychological and material) were used, the students managed better with new and sometimes difficult concepts and different working habits, and accomplished the practical work more smoothly . The teacher s tool-use and role as a mediator of meaning are also highlighted in the data analysis. Hopefully, this study can provide a seedbed for situations in which knowledge produced together, as well as horizontally oriented tool-use, can make school-learned knowledge more relevant to immigrant students everyday lives, and help students to better cope with both classroom work and outside activities. KEY WORDS: home economics education, multicultural education, sociocultural perspective, classroom interaction, videoanalysis
Resumo:
Cells are packed with membrane structures, defining the inside and outside, and the different subcellular compartments. These membranes consisting mainly of phospholipids have a variety of functions in addition to providing a permeability barrier for various compounds. These functions involve cellular signaling, where lipids can act as second messengers, or direct regulation of membrane associating proteins. The first part of this study focuses on relating some of the physicochemical properties of membrane lipids to the association of drug compounds to membranes. A fluorescence based method is described allowing for determination of the membrane association of drugs. This method was subsequently applied to a novel drug, siramesine, previously shown to have anti-cancer activity. Siramesine was found to associate with anionic lipids. Especially interesting is its strong affinity for a second messenger lipid phosphatidic acid. This is the first example of a small molecule drug compound specifically interacting with a cellular lipid. Phosphatidic acid in cells is required for the activation of many signaling pathways mediating growth and proliferation. This provides an intriguing possibility for a simple molecular mechanism of the observed anti-cancer activity of siramesine. In the second part the thermal behavior and self assembly of charged and uncharged membrane assemblies was studied. Strong inter-lamellar co-operativity was observed for multilamellar DPPC vesicles using fluorescence techniques together with calorimetry. The commonly used membrane models, large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) were found to possess different biophysical properties as interlamellar interactions of MLVs drive segregation of a pyrene labeled lipid analogue into clusters. The effect of a counter-ion lattice on the self assembly of a cationic gemini surfactant was studied. The presence of NaCl strongly influenced the thermal phase behavior of M-1 vesicles, causing formation of giant vesicles upon exceeding a phase transition temperature, followed by a subsequent transition into a more homogenous dispersion. Understanding the underlying biophysical aspects of cellular membranes is of fundamental importance as the complex picture of the structure and function of cells is evolving. Many of the cellular reactions take place on membranes and membranes are known to regulate the activity of many peripheral and intergral membrane associating proteins. From the point of view of drug design and gene technology, membranes can provide an interesting target for future development of drugs, but also a vehicle sensitive for environmental changes allowing for encapsulating drugs and targeting them to the desired site of action.