7 resultados para stocking rate

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wild salmon stocks in the northern Baltic rivers became endangered in the second half of the 20th century, mainly due to recruitment overfishing. As a result, supplementary stocking was widely practised, and supplementation of the Tornionjoki salmon stock took place over a 25 year period until 2002. The stock has been closely monitored by electrofishing, smolt trapping, mark-recapture studies, catch samples and catch surveys. Background information on hatchery-reared stocked juveniles was also collected for this study. Bayesian statistics was applied to the data as this method offers the possibility of bringing prior information into the analysis and an advanced ability for incorporating uncertainty, and also provides probabilities for a multitude of hypotheses. Substantial divergences between reared and wild Tornionjoki salmon were identified in both demographic and phenological characteristics. The divergences tended to be larger the longer the duration spent in hatchery and the more favourable the hatchery conditions were for fast growth. Differences in environment likely induced most of the divergences, but selection of brood fish might have resulted in genotypic divergence in maturation age of reared salmon. Survival of stocked 1-year old juveniles to smolt varied from about 10% to about 25%. Stocking on the lower reach of the river seemed to decrease survival, and the negative effect of stocking volume on survival raises the concern of possible similar effects on the extant wild population. Post-smolt survival of wild Tornionjoki smolts was on average two times higher than that of smolts stocked as parr and 2.5 times higher than that of stocked smolts. Smolts of different groups showed synchronous variation and similar long-term survival trends. Both groups of reared salmon were more vulnerable to offshore driftnet and coastal trapnet fishing than wild salmon. Average survival from smolt to spawners of wild salmon was 2.8 times higher than that of salmon stocked as parr and 3.3 times higher than that of salmon stocked as smolts. Wild salmon and salmon stocked as parr were found to have similar lifetime survival rates, while stocked smolts have a lifetime survival rate over 4 times higher than the two other groups. If eggs are collected from the wild brood fish, stocking parr would therefore not be a sensible option. Stocking smolts instead would create a net benefit in terms of the number of spawners, but this strategy has serious drawbacks and risks associated with the larger phenotypic and demographic divergences from wild salmon. Supplementation was shown not to be the key factor behind the recovery of the Tornionjoki and other northern Baltic salmon stocks. Instead, a combination of restrictions in the sea fishery and simultaneous occurrence of favourable natural conditions for survival were the main reasons for the revival in the 1990 s. This study questions the effectiveness of supplementation as a conservation management tool. The benefits of supplementation seem at best limited. Relatively high occurrences of reared fish in catches may generate false optimism concerning the effects of supplementation. Supplementation may lead to genetic risks due to problems in brood fish collection and artificial rearing with relaxed natural selection and domestication. Appropriate management of fisheries is the main alternative to supplementation, without which all other efforts for long-term maintenance of a healthy fish resource fail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acacia senegal, the gum arabic producing tree, is the most important component in traditional dryland agroforestry systems in the Blue Nile region, Sudan. The aim of the present study was to provide new knowledge on the potential use of A. senegal in dryland agroforestry systems on clay soils, as well as information on tree/crop interaction, and on silvicultural and management tools, with consideration on system productivity, nutrient cycling and sustainability. Moreover, the aim was also to clarify the intra-specific variation in the performance of A. senegal and, specifically, the adaptation of trees of different origin to the clay soils of the Blue Nile region. In agroforestry systems established at the beginning of the study, tree and crop growth, water use, gum and crop yields, nutrient cycling and system performance were investigated for a period of four years (1999 to 2002). Trees were grown at 5 x 5 m and 10 x 10 m spacing alone or in mixture with sorghum or sesame; crops were also grown in sole culture. The symbiotic biological N2 fixation by A. senegal was estimated using the 15N natural abundance (δ15N) procedure in eight provenances collected from different environments and soil types of the gum arabic belt and grown in clay soil in the Blue Nile region. Balanites aegyptiaca (a non-legume) was used as a non-N-fixing reference tree species, so as to allow 15N-based estimates of the proportion of the nitrogen in trees derived from the atmosphere. In the planted acacia trees, measurements were made on shoot growth, water-use efficiency (as assessed by the δ13C method) and (starting from the third year) gum production. Carbon isotope ratios were obtained from the leaves and branch wood samples. The agroforestry system design caused no statistically significant variation in water use, but the variation was highly significant between years, and the highest water use occurred in the years with high rainfall. No statistically significant differences were found in sorghum or sesame yields when intercropping and sole crop systems were compared (yield averages were 1.54 and 1.54 ha-1 for sorghum and 0.36 and 0.42 t ha-1 for sesame in the intercropped and mono-crop plots, respectively). Thus, at an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield, but the pattern of resource capture by trees and crops may change as the system matures. Intercropping resulted in taller trees and larger basal and crown diameters as compared to the development of sole trees. It also resulted in a higher land equivalent ratio. When gum yields were analysed it was found that a significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the total gum yield in a particular year. In trees, the concentrations of N and P were higher in leaves and roots, whereas the levels of K were higher in stems, branches and roots. Soil organic matter, N, P and K contents were highest in the upper soil stratum. There was some indication that the P content slightly increased in the topsoil as the agroforestry plantations aged. At a stocking of 400 trees ha-1 (5 x 5 m spacing), A. senegal accumulated in the biomass a total of 18, 1.21, 7.8 and 972 kg ha-1of N, P, K and OC, respectively. Trees contributed ca. 217 and 1500 kg ha-1 of K and OC, respectively, to the top 25-cm of soil over the first four years of intercropping. Acacia provenances of clay plain origin showed considerable variation in seed weight. They also had the lowest average seed weight as compared to the sandy soil (western) provenances. At the experimental site in the clay soil region, the clay provenances were distinctly superior to the sand provenances in all traits studied but especially in basal diameter and crown width, thus reflecting their adaptation to the environment. Values of δ13C, indicating water use efficiency, were higher in the sand soil group as compared to the clay one, both in leaves and in branch wood. This suggests that the sand provenances (with an average value of -28.07 ) displayed conservative water use and high drought tolerance. Of the clay provenances, the local one (Bout) displayed a highly negative (-29.31 ) value, which indicates less conservative water use that resulted in high productivity at this particular clay-soil site. Water use thus appeared to correspond to the environmental conditions prevailing at the original locations for these provenances. Results suggest that A. senegal provenances from the clay part of the gum belt are adapted for a faster growth rate and higher biomass and gum productivity as compared to provenances from sand regions. A strong negative relationship was found between the per-tree gum yield and water use efficiency, as indicated by δ13C. The differences in water use and gum production were greater among provenance groups than within them, suggesting that selection among rather than within provenances would result in distinct genetic gain in gum yield. The relative δ15N values ( ) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. The amount of Ndfa increased significantly with age in all provenances, indicating that A. senegal is a potentially efficient nitrogen fixer and has an important role in t agroforestry development. The total above-ground contribution of fixed N to foliage growth in 4-year-old A. senegal trees was highest in the Rahad sand-soil provenance (46.7 kg N ha-1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha-1). This study represents the first use of the δ15N method for estimating the N input by A. senegal in the gum belt of Sudan. Key words: Acacia senegal, agroforestry, clay plain, δ13C, δ15N, gum arabic, nutrient cycling, Ndfa, Sorghum bicolor, Sesamum indicum

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This licentiate's thesis analyzes the macroeconomic effects of fiscal policy in a small open economy under a flexible exchange rate regime, assuming that the government spends exclusively on domestically produced goods. The motivation for this research comes from the observation that the literature on the new open economy macroeconomics (NOEM) has focused almost exclusively on two-country global models and the analyses of the effects of fiscal policy on small economies are almost completely ignored. This thesis aims at filling in the gap in the NOEM literature and illustrates how the macroeconomic effects of fiscal policy in a small open economy depend on the specification of preferences. The research method is to present two theoretical model that are extensions to the model contained in the Appendix to Obstfeld and Rogoff (1995). The first model analyzes the macroeconomic effects of fiscal policy, making use of a model that exploits the idea of modelling private and government consumption as substitutes in private utility. The model offers intuitive predictions on how the effects of fiscal policy depend on the marginal rate of substitution between private and government consumption. The findings illustrate that the higher the substitutability between private and government consumption, (i) the bigger is the crowding out effect on private consumption (ii) and the smaller is the positive effect on output. The welfare analysis shows that the less fiscal policy decreases welfare the higher is the marginal rate of substitution between private and government consumption. The second model of this thesis studies how the macroeconomic effects of fiscal policy depend on the elasticity of substitution between traded and nontraded goods. This model reveals that this elasticity a key variable to explain the exchange rate, current account and output response to a permanent rise in government spending. Finally, the model demonstrates that temporary changes in government spending are an effective stabilization tool when used wisely and timely in response to undesired fluctuations in output. Undesired fluctuations in output can be perfectly offset by an opposite change in government spending without causing any side-effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersal is a highly important life history trait. In fragmented landscapes the long-term persistence of populations depends on dispersal. Evolution of dispersal is affected by costs and benefits and these may differ between different landscapes. This results in differences in the strength and direction of natural selection on dispersal in fragmented landscapes. Dispersal has been shown to be a nonrandom process that is associated with traits such as flight ability in insects. This thesis examines genetic and physiological traits affecting dispersal in the Glanville fritillary butterfly (Melitaea cinxia). Flight metabolic rate is a repeatable trait representing flight ability. Unlike in many vertebrates, resting metabolic rate cannot be used as a surrogate of maximum metabolic rate as no strong correlation between the two was found in the Glanville fritillary. Resting and flight metabolic rate are affected by environmental variables, most notably temperature. However, only flight metabolic rate has a strong genetic component. Molecular variation in the much-studied candidate locus phosphoglucose isomerase (Pgi), which encodes the glycolytic enzyme PGI, has an effect on carbohydrate metabolism in flight. This effect is temperature dependent: in low to moderate temperatures individuals with the heterozygous genotype at the single nucleotide polymorphism (SNP) AA111 have higher flight metabolic rate than the common homozygous genotype. At high temperatures the situation is reversed. This finding suggests that variation in enzyme properties is indeed translated to organismal performance. High-resolution data on individual female Glanville fritillaries moving freely in the field were recorded using harmonic radar. There was a strong positive correlation between flight metabolic rate and dispersal rate. Flight metabolic rate explained one third of the observed variation in the one-hour movement distance. A fine-scaled analysis of mobility showed that mobility peaked at intermediate ambient temperatures but the two common Pgi genotypes differed in their reaction norms to temperature. As with flight metabolic rate, heterozygotes at SNP AA111 were the most active genotype in low to moderate temperatures. The results show that molecular variation is associated with variation in dispersal rate through the link of flight physiology under the influence of environmental conditions. The evolutionary pressures for dispersal differ between males and females. The effect of flight metabolic rate on dispersal was examined in both sexes in field and laboratory conditions. The relationship between flight metabolic rate and dispersal rate in the field and flight duration in the laboratory were found to differ between the two sexes. In females the relationship was positive, but in males the longest distances and flight durations were recorded for individuals with low flight metabolic rate. These findings may reflect male investment in mate locating. Instead of dispersing, males with high flight metabolic rate may establish territories and follow a perching strategy when locating females and hence move less on the landscape level. Males with low metabolic rate may be forced to disperse due to low competitive success or may show adaptations to an alternative strategy: patrolling. In the light of life history trade-offs and the rate of living theory having high metabolic rate may carry a cost in the form of shortened lifespan. Experiments relating flight metabolic rate to longevity showed a clear correlation in the opposite direction: high flight metabolic rate was associated with long lifespan. This suggests that individuals with high metabolic rate do not pay an extra physiological cost for their high flight capacity, rather there are positive correlations between different measures of fitness. These results highlight the importance of condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of Internet traffic use Transmission Control Protocol (TCP) as the transport level protocol. It provides a reliable ordered byte stream for the applications. However, applications such as live video streaming place an emphasis on timeliness over reliability. Also a smooth sending rate can be desirable over sharp changes in the sending rate. For these applications TCP is not necessarily suitable. Rate control attempts to address the demands of these applications. An important design feature in all rate control mechanisms is TCP friendliness. We should not negatively impact TCP performance since it is still the dominant protocol. Rate Control mechanisms are classified into two different mechanisms: window-based mechanisms and rate-based mechanisms. Window-based mechanisms increase their sending rate after a successful transfer of a window of packets similar to TCP. They typically decrease their sending rate sharply after a packet loss. Rate-based solutions control their sending rate in some other way. A large subset of rate-based solutions are called equation-based solutions. Equation-based solutions have a control equation which provides an allowed sending rate. Typically these rate-based solutions react slower to both packet losses and increases in available bandwidth making their sending rate smoother than that of window-based solutions. This report contains a survey of rate control mechanisms and a discussion of their relative strengths and weaknesses. A section is dedicated to a discussion on the enhancements in wireless environments. Another topic in the report is bandwidth estimation. Bandwidth estimation is divided into capacity estimation and available bandwidth estimation. We describe techniques that enable the calculation of a fair sending rate that can be used to create novel rate control mechanisms.