9 resultados para security in wireless sensor networks

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor networks represent an attractive tool to observe the physical world. Networks of tiny sensors can be used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Application-specific deployments of static-sensor networks have been widely investigated. Commonly, these networks involve a centralized data-collection point and no sharing of data outside the organization that owns it. Although this approach can accommodate many application scenarios, it significantly deviates from the pervasive computing vision of ubiquitous sensing where user applications seamlessly access anytime, anywhere data produced by sensors embedded in the surroundings. With the ubiquity and ever-increasing capabilities of mobile devices, urban environments can help give substance to the ubiquitous sensing vision through Urbanets, spontaneously created urban networks. Urbanets consist of mobile multi-sensor devices, such as smart phones and vehicular systems, public sensor networks deployed by municipalities, and individual sensors incorporated in buildings, roads, or daily artifacts. My thesis is that "multi-sensor mobile devices can be successfully programmed to become the underpinning elements of an open, infrastructure-less, distributed sensing platform that can bring sensor data out of their traditional close-loop networks into everyday urban applications". Urbanets can support a variety of services ranging from emergency and surveillance to tourist guidance and entertainment. For instance, cars can be used to provide traffic information services to alert drivers to upcoming traffic jams, and phones to provide shopping recommender services to inform users of special offers at the mall. Urbanets cannot be programmed using traditional distributed computing models, which assume underlying networks with functionally homogeneous nodes, stable configurations, and known delays. Conversely, Urbanets have functionally heterogeneous nodes, volatile configurations, and unknown delays. Instead, solutions developed for sensor networks and mobile ad hoc networks can be leveraged to provide novel architectures that address Urbanet-specific requirements, while providing useful abstractions that hide the network complexity from the programmer. This dissertation presents two middleware architectures that can support mobile sensing applications in Urbanets. Contory offers a declarative programming model that views Urbanets as a distributed sensor database and exposes an SQL-like interface to developers. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous and semantically correct interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. In addition, they allow on-demand collection of sensor data with the accuracy and at the frequency required by every application. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in ad hoc networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless access is expected to play a crucial role in the future of the Internet. The demands of the wireless environment are not always compatible with the assumptions that were made on the era of the wired links. At the same time, new services that take advantage of the advances in many areas of technology are invented. These services include delivery of mass media like television and radio, Internet phone calls, and video conferencing. The network must be able to deliver these services with acceptable performance and quality to the end user. This thesis presents an experimental study to measure the performance of bulk data TCP transfers, streaming audio flows, and HTTP transfers which compete the limited bandwidth of the GPRS/UMTS-like wireless link. The wireless link characteristics are modeled with a wireless network emulator. We analyze how different competing workload types behave with regular TPC and how the active queue management, the Differentiated services (DiffServ), and a combination of TCP enhancements affect the performance and the quality of service. We test on four link types including an error-free link and the links with different Automatic Repeat reQuest (ARQ) persistency. The analysis consists of comparing the resulting performance in different configurations based on defined metrics. We observed that DiffServ and Random Early Detection (RED) with Explicit Congestion Notification (ECN) are useful, and in some conditions necessary, for quality of service and fairness because a long queuing delay and congestion related packet losses cause problems without DiffServ and RED. However, we observed situations, where there is still room for significant improvements if the link-level is aware of the quality of service. Only very error-prone link diminishes the benefits to nil. The combination of TCP enhancements improves performance. These include initial window of four, Control Block Interdependence (CBI) and Forward RTO recovery (F-RTO). The initial window of four helps a later starting TCP flow to start faster but generates congestion under some conditions. CBI prevents slow-start overshoot and balances slow start in the presence of error drops, and F-RTO reduces unnecessary retransmissions successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical framework of the link between climate change, rural development, sustainable agriculture, poverty, and food security is presented. Some options to respond to climate change are described. Current knowledge and potential effects on agricultural productivity is discussed. Necessary conditions for successful adaptation includes secured property rights to land, institutions that make market access possible and credit possibilities. The options of mitigation and enhanced adaptive capacity and the requirements for their implementation are discussed.