22 resultados para sciences européennes, applications
em Helda - Digital Repository of University of Helsinki
Resumo:
Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.
Resumo:
The information that the economic agents have and regard relevant to their decision making is often assumed to be exogenous in economics. It is assumed that the agents either poses or can observe the payoff relevant information without having to exert any effort to acquire it. In this thesis we relax the assumption of ex-ante fixed information structure and study what happens to the equilibrium behavior when the agents must also decide what information to acquire and when to acquire it. This thesis addresses this question in the two essays on herding and two essays on auction theory. In the first two essays, that are joint work with Klaus Kultti, we study herding models where it is costly to acquire information on the actions that the preceding agents have taken. In our model the agents have to decide both the action that they take and additionally the information that they want to acquire by observing their predecessors. We characterize the equilibrium behavior when the decision to observe preceding agents' actions is endogenous and show how the equilibrium outcome may differ from the standard model, where all preceding agents actions are assumed to be observable. In the latter part of this thesis we study two dynamic auctions: the English and the Dutch auction. We consider a situation where bidder(s) are uninformed about their valuations for the object that is put up for sale and they may acquire this information for a small cost at any point during the auction. We study the case of independent private valuations. In the third essay of the thesis we characterize the equilibrium behavior in an English auction when there are informed and uninformed bidders. We show that the informed bidder may jump bid and signal to the uninformed that he has a high valuation, thus deterring the uninformed from acquiring information and staying in the auction. The uninformed optimally acquires information once the price has passed a particular threshold and the informed has not signalled that his valuation is high. In addition, we provide an example of an information structure where the informed bidder initially waits and then makes multiple jumps. In the fourth essay of this thesis we study the Dutch auction. We consider two cases where all bidders are all initially uninformed. In the first case the information acquisition cost is the same across all bidders and in the second also the cost of information acquisition is independently distributed and private information to the bidders. We characterize a mixed strategy equilibrium in the first and a pure strategy equilibrium in the second case. In addition we provide a conjecture of an equilibrium in an asymmetric situation where there is one informed and one uninformed bidder. We compare the revenues that the first price auction and the Dutch auction generate and we find that under some circumstances the Dutch auction outperforms the first price sealed bid auction. The usual first price sealed bid auction and the Dutch auction are strategically equivalent. However, this equivalence breaks down in case information is acquired during the auction.
Resumo:
The tackling of coastal eutrophication requires water protection measures based on status assessments of water quality. The main purpose of this thesis was to evaluate whether it is possible both scientifically and within the terms of the European Union Water Framework Directive (WFD) to assess the status of coastal marine waters reliably by using phytoplankton biomass (ww) and chlorophyll a (Chl) as indicators of eutrophication in Finnish coastal waters. Empirical approaches were used to study whether the criteria, established for determining an indicator, are fulfilled. The first criterion (i) was that an indicator should respond to anthropogenic stresses in a predictable manner and has low variability in its response. Summertime Chl could be predicted accurately by nutrient concentrations, but not from the external annual loads alone, because of the rapid affect of primary production and sedimentation close to the loading sources in summer. The most accurate predictions were achieved in the Archipelago Sea, where total phosphorus (TP) and total nitrogen (TN) alone accounted for 87% and 78% of the variation in Chl, respectively. In river estuaries, the TP mass-balance regression model predicted Chl most accurately when nutrients originated from point-sources, whereas land-use regression models were most accurate in cases when nutrients originated mainly from diffuse sources. The inclusion of morphometry (e.g. mean depth) into nutrient models improved accuracy of the predictions. The second criterion (ii) was associated with the WFD. It requires that an indicator should have type-specific reference conditions, which are defined as "conditions where the values of the biological quality elements are at high ecological status". In establishing reference conditions, the empirical approach could only be used in the outer coastal water types, where historical observations of Secchi depth of the early 1900s are available. The most accurate prediction was achieved in the Quark. In the inner coastal water types, reference Chl, estimated from present monitoring data, are imprecise - not only because of the less accurate estimation method but also because the intrinsic characteristics, described for instance by morphometry, vary considerably inside these extensive inner coastal types. As for phytoplankton biomass, the reference values were less accurate than in the case of Chl, because it was possible to estimate reference conditions for biomass only by using the reconstructed Chl values, not the historical Secchi observations. An paleoecological approach was also applied to estimate annual average reference conditions for Chl. In Laajalahti, an urban embayment off Helsinki, strongly loaded by municipal waste waters in the 1960s and 1970s, reference conditions prevailed in the mid- and late 1800s. The recovery of the bay from pollution has been delayed as a consequence of benthic release of nutrients. Laajalahti will probably not achieve the good quality objectives of the WFD on time. The third criterion (iii) was associated with coastal management including the resources it has available. Analyses of Chl are cheap and fast to carry out compared to the analyses of phytoplankton biomass and species composition; the fact which has an effect on number of samples to be taken and thereby on the reliability of assessments. However, analyses on phytoplankton biomass and species composition provide more metrics for ecological classification, the metrics which reveal various aspects of eutrophication contrary to what Chl alone does.
Resumo:
During the last 10-15 years interest in mouse behavioural analysis has evolved considerably. The driving force is development in molecular biological techniques that allow manipulation of the mouse genome by changing the expression of genes. Therefore, with some limitations it is possible to study how genes participate in regulation of physiological functions and to create models explaining genetic contribution to various pathological conditions. The first aim of our study was to establish a framework for behavioural phenotyping of genetically modified mice. We established comprehensive battery of tests for the initial screening of mutant mice. These included tests for exploratory and locomotor activity, emotional behaviour, sensory functions, and cognitive performance. Our interest was in the behavioural patterns of common background strains used for genetic manipulations in mice. Additionally we studied the behavioural effect of sex differences, test history, and individual housing. Our findings highlight the importance of careful consideration of genetic background for analysis of mutant mice. It was evident that some backgrounds may mask or modify the behavioural phenotype of mutants and thereby lead to false positive or negative findings. Moreover, there is no universal strain that is equally suitable for all tests, and using different backgrounds allows one to address possible phenotype modifying factors. We discovered that previous experience affected performance in several tasks. The most sensitive traits were the exploratory and emotional behaviour, as well as motor and nociceptive functions. Therefore, it may be essential to repeat some of the tests in naïve animals for assuring the phenotype. Social isolation for a long time period had strong effects on exploratory behaviour, but also on learning and memory. All experiments revealed significant interactions between strain and environmental factors (test history or housing condition) indicating genotype-dependent effects of environmental manipulations. Several mutant line analyses utilize this information. For example, we studied mice overexpressing as well as those lacking extracellular matrix protein heparin-binding growth-associated molecule (HB-GAM), and mice lacking N-syndecan (a receptor for HB-GAM). All mutant mice appeared to be fertile and healthy, without any apparent neurological or sensory defects. The lack of HB-GAM and N-syndecan, however, significantly reduced the learning capacity of the mice. On the other hand, overexpression of HB-GAM resulted in facilitated learning. Moreover, HB-GAM knockout mice displayed higher anxiety-like behaviour, whereas anxiety was reduced in HB-GAM overexpressing mice. Changes in hippocampal plasticity accompanied the behavioural phenotypes. We conclude that HB-GAM and N-syndecan are involved in the modulation of synaptic plasticity in hippocampus and play a role in regulation of anxiety- and learning-related behaviour.
Resumo:
Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.
Resumo:
Transposons, mobile genetic elements that are ubiquitous in all living organisms have been used as tools in molecular biology for decades. They have the ability to move into discrete DNA locations with no apparent homology to the target site. The utility of transposons as molecular tools is based on their ability to integrate into various DNA sequences efficiently, producing extensive mutant clone libraries that can be used in various molecular biology applications. Bacteriophage Mu is one of the most useful transposons due to its well-characterized and simple in vitro transposition reaction. This study establishes the properties of the Mu in vitro transposition system as a versatile multipurpose tool in molecular biology. In addition, this study describes Mu-based applications for engineering proteins by random insertional transposon mutagenesis in order to study structure-function relationships in proteins. We initially characterized the properties of the minimal Mu in vitro transposition system. We showed that the Mu transposition system works efficiently and accurately and produces insertions into a wide spectrum of target sites in different DNA molecules. Then, we developed a pentapeptide insertion mutagenesis strategy for inserting random five amino acid cassettes into proteins. These protein variants can be used especially for screening important sites for protein-protein interactions. Also, the system may produce temperature-sensitive variants of the protein of interest. Furthermore, we developed an efficient screening system for high-resolution mapping of protein-protein interfaces with the pentapeptide insertion mutagenesis. This was accomplished by combining the mutagenesis with subsequent yeast two-hybrid screening and PCR-based genetic footprinting. This combination allows the analysis of the whole mutant library en masse, without the need for producing or isolating separate mutant clones, and the protein-protein interfaces can be determined at amino acid accuracy. The system was validated by analysing the interacting region of JFC1 with Rab8A, and we show that the interaction is mediated via the JFC1 Slp homology domain. In addition, we developed a procedure for the production of nested sets of N- and C-terminal deletion variants of proteins with the Mu system. These variants are useful in many functional studies of proteins, especially in mapping regions involved in protein-protein interactions. This methodology was validated by analysing the region in yeast Mso1 involved in an interaction with Sec1. The results of this study show that the Mu in vitro transposition system is versatile for various applicational purposes and can efficiently be adapted to random protein engineering applications for functional studies of proteins.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Climate change contributes directly or indirectly to changes in species distributions, and there is very high confidence that recent climate warming is already affecting ecosystems. The Arctic has already experienced the greatest regional warming in recent decades, and the trend is continuing. However, studies on the northern ecosystems are scarce compared to more southerly regions. Better understanding of the past and present environmental change is needed to be able to forecast the future. Multivariate methods were used to explore the distributional patterns of chironomids in 50 shallow (≤ 10m) lakes in relation to 24 variables determined in northern Fennoscandia at the ecotonal area from the boreal forest in the south to the orohemiarctic zone in the north. Highest taxon richness was noted at middle elevations around 400 m a.s.l. Significantly lower values were observed from cold lakes situated in the tundra zone. Lake water alkalinity had the strongest positive correlation with the taxon richness. Many taxa had preference for lakes either on tundra area or forested area. The variation in the chironomid abundance data was best correlated with sediment organic content (LOI), lake water total organic carbon content, pH and air temperature, with LOI being the strongest variable. Three major lake groups were separated on the basis of their chironomid assemblages: (i) small and shallow organic-rich lakes, (ii) large and base-rich lakes, and (iii) cold and clear oligotrophic tundra lakes. Environmental variables best discriminating the lake groups were LOI, taxon richness, and Mg. When repeated, this kind of an approach could be useful and efficient in monitoring the effects of global change on species ranges. Many species of fast spreading insects, including chironomids, show a remarkable ability to track environmental changes. Based on this ability, past environmental conditions have been reconstructed using their chitinous remains in the lake sediment profiles. In order to study the Holocene environmental history of subarctic aquatic systems, and quantitatively reconstruct the past temperatures at or near the treeline, long sediment cores covering the last 10000 years (the Holocene) were collected from three lakes. Lower temperature values than expected based on the presence of pine in the catchment during the mid-Holocene were reconstructed from a lake with great water volume and depth. The lake provided thermal refuge for profundal, cold adapted taxa during the warm period. In a shallow lake, the decrease in the reconstructed temperatures during the late Holocene may reflect the indirect response of the midges to climate change through, e.g., pH change. The results from three lakes indicated that the response of chironomids to climate have been more or less indirect. However, concurrent shifts in assemblages of chironomids and vegetation in two lakes during the Holocene time period indicated that the midges together with the terrestrial vegetation had responded to the same ultimate cause, which most likely was the Holocene climate change. This was also supported by the similarity in the long-term trends in faunal succession for the chironomid assemblages in several lakes in the area. In northern Finnish Lapland the distribution of chironomids were significantly correlated with physical and limnological factors that are most likely to change as a result of future climate change. The indirect and individualistic response of aquatic systems, as reconstructed using the chironomid assemblages, to the climate change in the past suggests that in the future, the lake ecosystems in the north do not respond in one predictable way to the global climate change. Lakes in the north may respond to global climate change in various ways that are dependent on the initial characters of the catchment area and the lake.
Resumo:
The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.
Resumo:
X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.
Resumo:
When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.