14 resultados para sample complexity
em Helda - Digital Repository of University of Helsinki
Resumo:
Background. Evidence of cognitive dysfunction in depressive and anxiety disorders is growing. However, the neuropsychological profile of young adults has received only little systematic investigation, although depressive and anxiety disorders are major public health problems for this age group. Available studies have typically failed to account for psychiatric comorbidity, and samples derived from population-based settings have also seldom been investigated. Burnout-related cognitive functioning has previously been investigated in only few studies, again all using clinical samples and wide age groups. Aims. Based on the information gained by conducting a comprehensive review, studies on cognitive impairment in depressive and anxiety disorders among young adults are rare. The present study examined cognitive functioning in young adults with a history of unipolar depressive or anxiety disorders in comparison to healthy peers, and associations of current burnout symptoms with cognitive functioning, in a population-based setting. The aim was also to determine whether cognitive deficits vary as a function of different disorder characteristics, such as severity, psychiatric comorbidity, age at onset, or the treatments received. Methods. Verbal and visual short-term memory, verbal long-term memory and learning, attention, psychomotor processing speed, verbal intelligence, and executive functioning were measured in a population-based sample of 21-35 year olds. Performance was compared firstly between participants with pure non-psychotic depression (n=68) and healthy peers (n=70), secondly between pure (n=69) and comorbid depression (n=57), and thirdly between participants with anxiety disorders (n=76) and healthy peers (n=71). The diagnostic procedure was based on the SCID interview. Fourthly, the associations of current burnout symptoms, measured with the Maslach Burnout Inventory General Survey, and neuropsychological test performance were investigated among working young adults (n=225). Results. Young adults with depressive or anxiety disorders, with or without psychiatric comorbidity, were not found to have major cognitive impairments when compared to healthy peers. Only mildly compromised verbal learning was found among depressed participants. Pure and comorbid depression groups did not differ in cognitive functioning, either. Among depressed participants, those who had received treatment showed more impaired verbal memory and executive functioning, and earlier onset corresponded with more impaired executive functioning. In anxiety disorders, psychotropic medication and low psychosocial functioning were associated with deficits in executive functioning, psychomotor processing speed, and visual short-term memory. Current burnout symptoms were associated with better performance in verbal working memory and verbal intelligence. However, lower examiner-rated social and occupational functioning was associated with problems in verbal attention, memory, and learning. Conclusions. Depression, anxiety disorders, or burnout symptoms may not be associated with major cognitive deficits among young adults derived from the general population. Even psychiatric comorbidity may not aggravate cognitive functioning in depressive or anxiety disorders among these young adults. However, treatment-seeking in depression was found to be associated with cognitive deficits, suggesting that these deficits relate to increased distress. Additionally, early-onset depression, found to be associated with executive dysfunction, may represent a more severe form of the disorder. In anxiety disorders, those with low symptom-related psychosocial functioning may have cognitive impairment. An association with self-reported burnout symptoms and cognitive deficits was not detected, but individuals with low social and occupational functioning may have impaired cognition.
Development of Sample Pretreatment and Liquid Chromatographic Techniques for Antioxidative Compounds
Resumo:
In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.
Resumo:
Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.
Resumo:
Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.
Resumo:
The study in its entirety focused on factors related to adolescents decisions concerning drug use. The term drug use is taken here to include the use of tobacco products, alcohol, narcotics, and other addictive substances. First, the reasons given for drug use (attributions) were investigated. Secondly, the influence of personal goals, the beliefs involved in decision making, psychosocial adjustment including body image and involvement with peers, and parental relationships on drug use were studied. Two cohorts participated in the study. In 1984, a questionnaire on reasons for drug use was administered to a sample of adolescents aged 14-16 (N=396). A further questionnaire was administered to another sample of adolescents aged 14-16 (N=488) in 1999. The results for both cohorts were analyzed in Articles I and II. In Articles III and IV further analysis was carried out on the second cohort (N=488). The research report presented here provides a synthesis of all four articles, together with material from a further analysis. In a comparison of the two cohorts it was found that the attributions for drug use had changed considerably over the intervening fifteen-year period. In relation to alcohol and narcotics use an increase was found in reasons involving inner subjective experiences, with mention of the good feeling and fun resulting from alcohol and narcotics use. In addition, the goals of alcohol consumption were increasingly perceived as drinking to get drunk, and for its own sake. The attributions for the adolescents own smoking behavior were quite different from the attributions for smoking by others. The attributions were only weakly influenced by the participants gender or by their smoking habits, either in 1984 or 1999. In relation to participants own smoking, the later questionnaire elicited more mention of inner subjective experiences involving "good feeling. In relation to the perceived reasons for other people s smoking, it elicited more responses connected with the notion of "belonging. In the second sample, the results indicated that the levels of body satisfaction among adolescent girls are lower than those among adolescent boys. Overall, dissatisfaction with one's physical appearance seemed to relate to drug use. Girls were also found to engage in more discussions than boys; this applied to (i) discussion with peers (concerning both intimate and general matters), and (ii) discussion with parents (concerning general matters). However, more than a quarter of the boys (out of the entire population) reported only low intimacy with both parents and peers. If both drinking and smoking were considered, it seemed that girls in particular who reported drinking and smoking also reported high intimacy with parents and peers. Boys who reported drinking and smoking reported only medium intimacy with parents and peers. In addition, having an intimate relationship with one's peers was associated with a greater tendency to drink purely in order to get drunk. Overall, the results seemed to suggest that drug use is connected with a close relationship with peers and (surprisingly) with a close relationship with parents. Nevertheless, there were also indications that to some extent peer relationships can also protect adolescents from smoking and alcohol use. The results, which underline the complexity of adolescent drug use, are taken up in the Discussion section. It may be that body image and/or other identity factors play a more prominent role in all drug use than has previously been acknowledged. It does appear that in the course of planning support campaigns for adolescents at risk of drug use, we should focus more closely on individuals and their inner world. More research on this field is clearly needed, and therefore some ideas for future research are also presented.
Resumo:
We present a measurement of the top quark mass with t-tbar dilepton events produced in p-pbar collisions at the Fermilab Tevatron $\sqrt{s}$=1.96 TeV and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb$^{-1}$, are selected as t-tbar candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ($\phi_{\nu_1},\phi_{\nu_2}$) of neutrinos and reconstruct the top quark mass for each $\phi_{\nu_1},\phi_{\nu_2}$ pair by minimizing a $\chi^2$ function in the t-tbar dilepton hypothesis. We assign $\chi^2$-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t-tbar and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of $165.5^{+{3.4}}_{-{3.3}}$(stat.)$\pm 3.1$(syst.) GeV/$c^2$.
Resumo:
We have presented an overview of the FSIG approach and related FSIG gram- mars to issues of very low complexity and parsing strategy. We ended up with serious optimism according to which most FSIG grammars could be decom- posed in a reasonable way and then processed efficiently.
Resumo:
The growing interest for sequencing with higher throughput in the last decade has led to the development of new sequencing applications. This thesis concentrates on optimizing DNA library preparation for Illumina Genome Analyzer II sequencer. The library preparation steps that were optimized include fragmentation, PCR purification and quantification. DNA fragmentation was performed with focused sonication in different concentrations and durations. Two column based PCR purification method, gel matrix method and magnetic bead based method were compared. Quantitative PCR and gel electrophoresis in a chip were compared for DNA quantification. The magnetic bead purification was found to be the most efficient and flexible purification method. The fragmentation protocol was changed to produce longer fragments to be compatible with longer sequencing reads. Quantitative PCR correlates better with the cluster number and should thus be considered to be the default quantification method for sequencing. As a result of this study more data have been acquired from sequencing with lower costs and troubleshooting has become easier as qualification steps have been added to the protocol. New sequencing instruments and applications will create a demand for further optimizations in future.
Resumo:
The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.
Resumo:
Tiivistelmä ReferatAbstract Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.
Resumo:
In this dissertation I study language complexity from a typological perspective. Since the structuralist era, it has been assumed that local complexity differences in languages are balanced out in cross-linguistic comparisons and that complexity is not affected by the geopolitical or sociocultural aspects of the speech community. However, these assumptions have seldom been studied systematically from a typological point of view. My objective is to define complexity so that it is possible to compare it across languages and to approach its variation with the methods of quantitative typology. My main empirical research questions are: i) does language complexity vary in any systematic way in local domains, and ii) can language complexity be affected by the geographical or social environment? These questions are studied in three articles, whose findings are summarized in the introduction to the dissertation. In order to enable cross-language comparison, I measure complexity as the description length of the regularities in an entity; I separate it from difficulty, focus on local instead of global complexity, and break it up into different types. This approach helps avoid the problems that plagued earlier metrics of language complexity. My approach to grammar is functional-typological in nature, and the theoretical framework is basic linguistic theory. I delimit the empirical research functionally to the marking of core arguments (the basic participants in the sentence). I assess the distributions of complexity in this domain with multifactorial statistical methods and use different sampling strategies, implementing, for instance, the Greenbergian view of universals as diachronic laws of type preference. My data come from large and balanced samples (up to approximately 850 languages), drawn mainly from reference grammars. The results suggest that various significant trends occur in the marking of core arguments in regard to complexity and that complexity in this domain correlates with population size. These results provide evidence that linguistic patterns interact among themselves in terms of complexity, that language structure adapts to the social environment, and that there may be cognitive mechanisms that limit complexity locally. My approach to complexity and language universals can therefore be successfully applied to empirical data and may serve as a model for further research in these areas.