8 resultados para salivary gland duct

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dioxins are ubiquitous environmental poisons having unequivocal adverse health effects on various species. The majority of their effects are thought to be mediated by the aryl hydrocarbon receptor (AhR). Developing human teeth may be sensitive to dioxins and the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to rodent teeth. Mechanisms of TCDD toxicity can be studied only experimentally. The aim of the present thesis work was to delineate morphological end points of developmental toxicity of TCDD in rat and mouse teeth and salivary glands in vivo and in vitro and to characterize their cellular and molecular background. Mouse embryonic teeth and submandibular gland explants were grown in organ culture without/with TCDD at various concentrations, examined stereomicroscopically and processed for histological examination. The effects of TCDD on cellular mechanisms essential for organogenesis were investigated. The expression of various genes eliciting the response to TCDD exposure or involved in tooth and salivary gland development was studied at the mRNA and/or protein levels by in situ hybridization and immunohistochemistry. Association of the dental effects of TCDD with the resistance of a rat strain to TCDD acute lethality was analyzed in two lactationally exposed rat strains. The effect of TCDD on rat molar tooth mineralization was studied in tissue sections. TCDD dose- and developmental stage-dependently interfered with tooth formation. TCDD prevented early mouse molar tooth morphogenesis and altered cuspal morphology by enhancing programmend cell death, or apoptosis, in dental epithelial cells programmed to undergo apotosis. Cell proliferation was not affected. TCDD impaired mineralization of rat molar dental matrices, possibly by specifically reducing the expression of the mineralization-related dentin sialophosphoprotein gene shown in cultured mouse teeth. The impaired mineralization of rat teeth was accompanied by decreased expression of AhR and the TCDD-inducible xenobiotic-metabolozing enzyme P4501 A1 (CYP1A1), suggesting mediation of the TCDD effect by the AhR pathway. The severe interference by TCDD with rat incisor formation was independent of the genotypic variation of AhR determining the resistance of a rat strain to TCDD acute lethality. The impairment by TCDD of mouse submandibular gland branching morphogenesis was associated with CYP1A1 induction and involved blockage of EGF receptor signalling. In conclusion, TCDD exposure is likely to have activated the AhR pathway in target organs with the consequent activation of other signalling pathways involving developmentally regulated genes. The resultant phenotype is organ specific and modified by epithelial-mesenchymal interactions and dependent on dose as well as the stage of organogenesis at the time of TCDD exposure. Teeth appear to be responsive to TCDD exposure throughout their development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Basement membranes are specialized sheets of extracellular matrix found in contact with epithelia, endothelia, and certain isolated cells. They support tissue architecture and regulate cell behaviour. Laminins are among the main constituents of basement membranes. Due to differences between laminin isoforms, laminins confer structural and functional diversity to basement membranes. The first aim of this study was to gain insights into the potential functions of the then least characterized laminins, alpha4 chain laminins, by evaluating their distribution in human tissues. We thus created a monoclonal antibody specific for laminin alpha4 chain. By immunohistochemistry, alpha4 chain laminins were primarily localized to basement membranes of blood vessel endothelia, skeletal, heart, and smooth muscle cells, nerves, and adipocytes. In addition, alpha4 chain laminins were found in the region of certain epithelial basement membranes in the epidermis, salivary gland, pancreas, esophagus, stomach, intestine, and kidney. Because of the consistent presence of alpha4 chain laminins in endothelial basement membranes of blood vessels, we evaluated the potential roles of endothelial laminins in blood vessels, lymphatic vessels, and carcinomas. Human endothelial cells produced alpha4 and alpha5 chain laminins. In quantitative and morphological adhesion assays, human endothelial cells barely adhered to alpha4 chain-containing laminin-411. The weak interaction of endothelial cells with laminin-411 appeared to be mediated by alpha6beta1 integrin. The alpha5 chain-containing laminin-511 promoted endothelial cell adhesion better than laminin-411, but it did not promote the formation of cell-extracellular matrix adhesion complexes. The adhesion of endothelial cells to laminin-511 appeared to be mediated by Lutheran glycoprotein together with beta1 and alphavbeta3 integrins. The results suggest that these laminins may induce a migratory phenotype in endothelial cells. In lymphatic capillaries, endothelial basement membranes showed immunoreactivity for laminin alpha4, beta1, beta2, and gamma1 chains, type IV and XVIII collagens, and nidogen-1. Considering the assumed inability of alpha4 chain laminins to polymerize and to promote basement membrane assembly, the findings may in part explain the incomplete basement membrane formation in these vessels. Lymphatic capillaries of ovarian carcinomas showed immunoreactivity also for laminin alpha5 chain and its receptor Lutheran glycoprotein, emphasizing a difference between normal and ovarian carcinoma lymphatic capillaries. In renal cell carcinomas, immunoreactivity for laminin alpha4 chain was found in stroma and basement membranes of blood vessels. In most tumours, immunoreactivity for laminin alpha4 chain was also observed in the basement membrane region of tumour cell islets. Renal carcinoma cells produced alpha4 chain laminins. Laminin-411 did not promote adhesion of renal carcinoma cells, but inhibited their adhesion to fibronectin. Renal carcinoma cells migrated more on laminin-411 than on fibronectin. The results suggest that alpha4 chain laminins have a counteradhesive function, and may thus have a role in detachment and invasion of renal carcinoma cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was twofold- Firstly, to determine the composition of the type IV collagen which are the major components of the basement membrane (BM), in the synovial lining of the rheumatoid arthritis (RA) patient and in the BM in the labial salivary gland of the Sjögrens syndrome (SS) patient. Secondly, this thesis aimed to investigate the role of the BM component laminin α4 and laminin α5 in the migration of neutrophils from the blood vessels thorough the synovial lining layer into synovial fluid and the presence of vWF in the microvasculature of labial salivary gland in SS. Our studies showed that certain α chains type IV collagen are low in RA compared to control synovial linings, while laminin α5 exhibited a pattern of low expression regions at the synovial lining interface towards the joint cavity and fluid. Also, high numbers of macrophage-like lining cells containing MMP-9 were found in the lining. MMP-9 was also found in the synovial fluid. Collagen α1/2 (IV) mRNA was found to be present in high amount compared to the other α(IV) chains and also showed intense labelling in immunohistochemical staining in normal and SS patients. In healthy glands α5(IV) and α6(IV) chains were found to be continuous around ducts but discontinuous around acini. The α5(IV) and α6(IV) mRNAs were present in LSG explants and HSG cell line, while in SS these chains seemed to be absent or appear only in patches around the ductal BM and tended to be absent around acini in immunohistochemical staining, indicating that their synthesis and/or degradation seemed to be locally regulated around acinar cells. The provisional matrix component vWF serves as a marker of vascular damage. Microvasculature in SS showed signs of focal damage which in turn might impair arteriolar feeding, capillary transudation and venular drainage of blood. However, capillary density was not decreased but rather increased, perhaps as a result of angiogenesis compensatory to microvascular damage. Microvascular involvement of LSG may contribute to the pathogenesis of this syndrome. This twofold approach allows us to understand the intricate relation between the ECM components and the immunopathological changes that occur during the pathogenesis of these inflammatory rheumatic disease processes. Also notably this study highlights the importance of maintaining a healthy ECM to prevent the progression or possibly allow reversal of the disease to a considerable level. Furthermore, it can be speculated that a healthy BM could quarantine the inflamed region or in case of cancer cells barricade the movement of malignant cells thereby preventing further spread to the surrounding areas. This understanding can be further applied to design appropriate drugs which act specifically to maintain a proper BM/BM like intercellular matrix composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a strongly female dominant autoimmune disease. SS targets mainly salivary and lacrimal glands and leads to loss of the secreting acinar cells of these glands. Accordingly, secretion of the affected glands is diminished and the main symptoms of SS, dryness of mouth and eyes, follow. In addition to these sicca symptoms, SS patients suffer from severe fatigue and can have various extraglandular symptoms. To date, the etiology of SS still remains unknown. Female dominance and the late onset of the disease simultaneously with remarkable hormonal changes in the body (menopause, adrenopause) encouraged us to hypothesize that sex steroids, especially androgens, are involved in the onset and progression of SS. We confirmed our hypothesis and showed that patients with SS suffer from androgen depletion both systemically and locally in the target tissue of SS, salivary glands. We especially focused on the local androgen environment in salivary glands and demonstrated that healthy salivary glands contain a complete enzymatic machinery for local synthesis of androgens and estrogens from pro-hormone dehydroepiandrosterone (DHEA). However, in SS salivary glands the enzymes catalyzing the local androgen synthesis are defective and, in a subgroup of patients, practically non-functional. Probably due to this local defect in DHEA processing, therapy with DHEA was found unbeneficial for SS patients in the treatment of fatigue. We also studied the effect of the local androgen depletion on salivary glands. We found that in salivary gland cells and healthy labial salivary glands androgens upregulate integrin subunits α1 and α2, which are important for the communication, differentiation and function of the acinar cells. On the contrary, in SS salivary glands DHEA failed to upregulate these signaling molecules, again probably due to defective processing of DHEA into active androgens. Our finding highlights the importance of the local androgen environment and local DHEA processing for the function and welfare of salivary glands. In conclusion, this study showed that patients with SS are androgen depleted both systemically and locally in salivary glands. SS patients also have a defective local sex steroid synthesizing enzymatic machinery further impairing the local androgen depletion. We also showed that the local androgen defect leads to decreased expression of acinar cell specific integrin molecules, which impairs the signaling between the acinar cells and basement membrane and might thus explain the acinar cell loss seen in SS salivary glands. By showing the importance of the local sex steroid imbalance in SS we have clarified some etiopathogenetic mechanisms of SS, which have thus far remained unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a common autoimmune disease affecting the lacrimal and salivary glands. SS is characterized by a considerable female predominance and a late age of onset, commonly at the time of adreno- and menopause. The levels of the androgen prohormone dehydroepiandrosterone-sulphate (DHEA-S) in the serum are lower in patients with SS than in age- and sex-matched healthy control subjects. The eventual systemic effects of low androgen levels in SS are not currently well understood. Basement membranes (BM) are specialized layers of extracellular matrix and are composed of laminin (LM) and type IV collagen matrix networks. BMs deliver messages to epithelial cells via cellular LM-receptors including integrins (Int) and Lutheran blood group antigen (Lu). The composition of BMs and distribution of LM-receptors in labial salivary glands (LSGs) of normal healthy controls and patients with SS was assessed. LMs have complex and highly regulated distribution in LSGs. LMs seem to have specific tasks in the dynamic regulation of acinar cell function. LM-111 is important for the normal acinar cell differentiation and its expression is diminished in SS. Also LM-211 and -411 seem to have some acinar specific functional tasks in LSGs. LM-311, -332 and -511 seem to have more general structure maintaining and supporting roles in LSGs and are relatively intact also in SS. Ints α3β1, α6β1, α6β4 and Lu seem to supply structural basis for the firm attachment of epithelial cells to the BM in LSGs. The expression of Ints α1β1 and α2β1 differed clearly from other LM-receptors in that they were found almost exclusively around the acini and intercalated duct cells in salivons suggesting some type of acinar cell compartment-specific or dominant function. Expression of these integrins was lower in SS compared to healthy controls suggesting that the LM-111 and -211-to-Int α1β1 and α2β1 interactions are defective in SS and are crucial to the maintenance of the acini in LSGs. DHEA/DHEA-S concentration in serum and locally in saliva of patients with SS seems to have effects on the salivary glands. These effects were first detected using the androgen-dependent CRISP-3 protein, the production and secretion of which were clearly diminished in SS. This might be due to the impaired function of the intracrine DHEA prohormone metabolizing machinery, which fails to successfully convert DHEA into its active metabolites in LSGs. The progenitor epithelial cells from the intercalated ductal area of LSGs migrate to the acinar compartment and then undergo a phenotype change into secretory acinar cells. This migration and phenotype change seem to be regulated by the LM-111-to-Int α1β1/Int α2β1 interactions. Lack of these interactions could be one factor limiting the normal remodelling process. Androgens are effective stimulators of Int α1β1 and α2β1 expression in physiologic concentrations. Addition of DHEA to the culture medium had effective stimulating effect on the Int α1β1 and α2β1 expression and its effect may be deficient in the LSGs of patients with SS.