2 resultados para propionate

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of these studies was to evaluate possible airway inflammation and remodeling at the bronchial level in cross-country skiers without a prior diagnosis of asthma, and relate the findings to patients with mild chronic asthma and patients with newly diagnosed asthma. We also studied the association of airway inflammatory changes and bronchial hyperresponsivess (BHR), and treatment effects in cross-country skiers and in patients with newly diagnosed asthma. Bronchial biopsies were obtained from the subjects by flexible bronchoscopy, and the inflammatory cells (eosinophils, mast cells, T-lymphocytes, macrophages, and neutrophils) were identified by immunohistochemistry. Tenascin (Tn) immunoreactivity in the bronchial basement membrane (BM) was identified by immunofluorescence staining. Lung function was measured with spirometry, and BHR was assessed by methacholine (skiers) or histamine (asthmatics) challenges. Skiers with BHR and asthma-like symptoms were recruited to a drug-intervention study. Skiers were given treatment (22 weeks) with placebo or budesonide (400 µg bid). Patients with newly diagnosed asthma were given treatment for 16 weeks with placebo, salmeterol (SLM) (50 µg bid), fluticasone propionate (FP) (250 µg bid), or disodium cromoglicate (DSCG) (5 mg qid). Bronchial biopsies were obtained at baseline and at the end of the treatment period. In the skiers a distinct airway inflammation was evident. In their bronchial biopsy specimens, T-lymphocyte, macrophage, and eosinophil counts were, respectively greater by 43-fold (P<0.001), 26-fold (P<0.001, and 2-fold (P<0.001) in skiers, and by 70-fold (p>0.001), 63-fold (P<0.001), and 8-fold (P<0.001) in asthmatic subjects than in controls. In skiers, neutrophil counts were more than 2-fold greater than in asthmatic subjects (P<0.05). Tn expression was higher in skiers than in controls and lower in skiers than in mild asthmatics. No significant changes were seen between skiers with or without BHR in the inflammatory cell counts or Tn expression. Treatment with inhaled budesonide did not attenuate asthma-like symptoms, the inflammatory cell infiltration, or BM Tn expression in the skiers. In newly diagnosed asthmatic patients, SLM, FP, and DSCG reduced asthma symptoms, and need for rescue medication (P<0.04). BHR was reduced by doubling doses 2.78, 5.22, and 1.35 respectively (all P<0.05). SLM and placebo had no effect on cell counts or Tn expression. FP and DSCG reduced eosinophil counts in the bronchial biopsy specimens (P<0.02 and <0.048, respectively). No significant change in tenascin expression appeared in any treatment group. Regarding to atopy, no significant differences existed in the inflammatory cell counts in the bronchial mucosa of subjects with newly diagnosed asthma or in elite cross country skiers. Tn expression in the BM was significantly higher in atopic asthma than in those with nonatopic asthma. Airway inflammation occurred in elite cross-country skiers with and without respiratory symptoms or BHR. Their inflammatory cell pattern differed from that in asthma. Infiltration with eosinophils, macrophages, and mast cells was milder, but lymphocyte counts did not differ from counts in asthmatic airways. Neutrophilic infiltration was more extensive in skiers than in asthmatics. Remodeling took place in the skiers’ airways, as reflected by increased expression of BM tenascin These inflammatory changes and Tn expression may be caused by prolonged exposure of the lower airways to inadequately humidified cold air. In skiers inflammatory changes and remodeling were not reversed with anti-inflammatory treatment. In contrast, in patients with newly diagnosed asthma, anti-inflammatory treatment did attenuate eosinophilic inflammation in the bronchial mucosa. In skiers, anti-inflammatory treatment did not attenuate BHR as it did in asthmatic patients. The BHR in skiers was attenuated spontaneously during placebo treatment, with no difference from budesonide treatment. Lower training intensity during the treatment period may explain this spontaneous decrease in BHR. The origin of BHR probably differs in skiers and in asthmatics. No significant association between BHR and inflammatory cell counts or between BHR and Tn expression was evident in cross-country skiers or asthmatic subjects. Airway remodeling differed between atopic and nonatopic asthma. As opposed to nonatopic asthma, Tn expression was higher in atopic asthma and is related to inflammatory cell densities.