6 resultados para postnatal development

em Helda - Digital Repository of University of Helsinki


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) acting through ionotropic GABAA receptors plays a crucial role in the activity of the central nervous system (CNS). It triggers Ca2+ rise providing trophic support in developing neurons and conducts fast inhibitory function in mature neuronal networks. There is a developmental change in the GABAA reversal potential towards more negative levels during the first two postnatal weeks in rodent hippocampus. This change provides the basis for mature GABAergic activity and is attributable to the developmental expression of the neuron-specific potassium chloride cotransporter 2 (KCC2). In this work we have studied the mechanisms responsible for the control of KCC2 developmental expression. As a model system we used hippocampal dissociated cultures plated from embryonic day (E) 17 mice embryos before the onset of KCC2 expression. We showed that KCC2 was significantly up-regulated during the first two weeks of culture development. Interestingly, the level of KCC2 upregulation was not altered by chronic pharmacological blockage of action potentials as well as GABAergic and glutamatergic synaptic transmission. By in silico analysis of the proximal KCC2 promoter region we identified 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. One of these transcription factors, namely early growth response factor 4 (Egr4), had similar developmental profile as KCC2 and considerably increased the activity of mouse KCC2 gene in neuronal cells. Next we investigated the involvement of neurotrophic factors in regulation of Egr4 and KCC2 expression. We found that in immature hippocampal cultures Egr4 and KCC2 levels were strongly up-regulated by brain derived neurotrophic factor (BDNF)and neurturin. The effect of neurotrophic factors was dependent on the activation of a mitogen activated protein kinase (MAPK) signal transduction pathway. Intact Egr4-binding site in proximal KCC2 promoter was required for BDNF-induced KCC2 transcription. In vitro data were confirmed by several in vivo experiments where we detected an upregulation of KCC2 protein levels after intrahippocampal administration of BDNF or neurturin. Importantly, a MAPK-dependent rise in Egr4 and KCC2 expression levels was also observed after a period of kainic acid-induced seizure activity in neonatal rats suggesting that neuronal activity might be involved in Egr4-mediated regulation of KCC2 expression. Finally we demonstrated that the mammalian KCC2 gene (alias Slc12a5) generated two neuron-specific isoforms by using alternative promoters and first exons. A novel isoform of KCC2, termed KCC2a, differed from the previously known KCC2b isoform by 40 unique N-terminal amino acid residues. KCC2a expression was restricted to CNS,remained relatively constant during postnatal development, and contributed 20 50% of total KCC2 mRNA expression in the neonatal mouse brainstem and spinal cord. In summary, our data provide insight into the complex regulation of KCC2 expression during early postnatal development. Although basal KCC2 expression seems to be intrinsically regulated, it can be further augmented by neurotrophic factors or by enhanced activity triggering MAPK phosphorylation and Egr4 induction. Additional KCC2a isoform, regulated by another promoter, provides basal KCC2 level in neonatal brainstem and spinal cord required for survival of KCC2b knockout mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

K-Cl cotransporter 2 (KCC2) maintains a low intracellular Cl concentration required for fast hyperpolarizing responses of neurons to classical inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. Decreased Cl extrusion observed in genetically modified KCC2-deficient mice leads to depolarizing GABA responses, impaired brain inhibition, and as a consequence to epileptic seizures. Identification of mechanisms regulating activity of the SLC12A5 gene, which encodes the KCC2 cotransporter, in normal and pathological conditions is, thus, of extreme importance. Multiple reports have previously elucidated in details a spatio-temporal pattern of KCC2 expression. Among the characteristic features are an exclusive neuronal specificity, a dramatic upregulation during embryonic and early postnatal development, and a significant downregulation by neuronal trauma. Numerous studies confirmed these expressional features, however transcriptional mechanisms predetermining the SLC12A5 gene behaviour are still unknown. The aim of the presented thesis is to recognize such transcriptional mechanisms and, on their basis, to create a transcriptional model that would explain the established SLC12A5 gene behaviour. Up to recently, only one KCC2 transcript has been thought to exist. A particular novelty of the presented work is the identification of two SLC12A5 gene promoters (SLC12A5-1a and SLC12A5-1b) that produce at least two KCC2 isoforms (KCC2a and KCC2b) differing by their N-terminal parts. Even though a functional 86Rb+ assay reveals no significant difference between transport activities of the isoforms, consensus sites for several protein kinases, found in KCC2a but not in KCC2b, imply a distinct kinetic regulation. As a logical continuation, the current work presents a detailed analysis of the KCC2a and KCC2b expression patterns. This analysis shows an exclusively neuron-specific pattern and similar expression levels for both isoforms during embryonic and neonatal development in rodents. During subsequent postnatal development, the KCC2b expression dramatically increases, while KCC2a expression, depending on central nervous system (CNS) area, either remains at the same level or moderately decreases. In an attempt to explain both the neuronal specificity and the distinct expressional kinetics of the KCC2a and KCC2b isoforms during postnatal development, the corresponding SLC12A5-1a and SLC12A5-1b promoters have been subjected to a comprehensive bioinformatical analysis. Binding sites of several transcription factors (TFs), conserved in the mammalian SLC12A5 gene orthologs, have been identified that might shed light on the observed behaviour of the SLC12A5 gene. Possible roles of these TFs in the regulating of the SLC12A5 gene expression have been elucidated in subsequent experiments and are discussed in the current thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inner ear originates from an ectodermal thickening called the otic placode. The otic placode invaginates and closes to an otic vesicle, the otocyst. The otocyst epithelium undergoes morphogenetic changes and cell differentiation, leading to the formation of the labyrinth-like mature inner ear. Epithelial-mesenchymal interactions control inner ear morphogenesis, but the modes and molecules are largely unresolved. The expressions of negative cell cycle regulators in the epithelium of the early-developing inner ear have also not been elucidated. The mature inner ear comprises the hearing (cochlea) and balance (vestibular) organs that contain the nonsensory and sensory cells. In mammals, the inner ear sensory cells, called hair cells, exit the cell cycle during embryogenesis and are mitotically quiescent during late-embryonic differentiation stages and postnatally. The mechanisms that maintain this hair cell quiescense are largely unresolved. In this work I examined 1) the epithelial-mesenchymal interactions involved in inner ear morphogenesis, 2) expression of negative cell cycle regulators in the epithelium of the early developing inner ear and 3) the molecular mechanisms that maintain the postmitotic state of inner ear sensory cells. We observed that during otocyst stages, epithelial fibroblast growth factor 9 (Fgf9) communicates with the surrounding mesenchyme, where its receptors are expressed. Fgf9 inactivation leads to reduced proliferation of the surrounding vestibular mesenchyme and to the absence of semicircular canals. Semicircular canal development is blocked, since fusion plates do not form. These results show that the mesenchyme directs fusion plate formation and give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of proliferation. We show that the members of the Cip/Kip family of CKIs (p21Cip1, p27Kip1 and p57Kip2) are expressed in the early-developing inner ear. Our expression data suggest that CKIs divide the otic epithelium into proliferative and nonproliferative compartments that may underlie shaping of the otocyst. At later stages, CKIs regulate proliferation of the vestibular appendages, and this may regulate their continual growth. In addition to restricting proliferation, CKIs may play a role in regional differentiation of various epithelial cells. Differentiating and adult inner ear hair cells are postmitotic and do not proliferate in response to serum or mitogenic growth factors. In our study, we show that this is the result of the activity of negative cell cycle regulators. Based on expression profiles, we first focused on the retinoblastoma (Rb) gene, which functions downstream of the CKIs. Analysis of the inner ear phenotype of Rb mutant mice show, that the retinoblastoma protein regulates the postmitotic state of hair cells. Rb inactivation leads to hyperplasia of vestibular and cochlear sensory epithelia that is a result of abnormal cell cycle entry of differentiated hair cells and of delayed cell cycle exit of the hair cell precursor cells. In addition, we show that p21Cip1 and p19Ink4d cooperate in maintaining the postmitotic state of postnatal auditory hair cells. Whereas inactivation of p19Ink4d alone leads to low-level S-phase entry (Chen et al., 2003) and p21Cip1 null mutant mice have a normal inner ear phenotype, codeletion of p19Ink4d and p21Cip1 triggers high-level S-phase entry of auditory hair cells during early postnatal life, which leads to supernumerary hair cells. The ectopic hair cells undergo apoptosis in all of the mutant mice studied, DNA damage being the immediate cause of this death. These findings demonstrate that the maintenance of the postmitotic state of hair cells is regulated by Rb and several CKIs, and that these cell cycle regulators are critical for the lifelong survival of hair cells. These data have implications for the future design of therapies to induce hair cell regrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain function is critically dependent on the ionic homeostasis in both the extra- and intracellular compartment. The regulation of brain extracellular ionic composition mainly relies on active transport at blood brain and at blood cerebrospinal fluid interfaces whereas intracellular ion regulation is based on plasmalemmal transporters of neurons and glia. In addition, the latter mechanisms can generate physiologically as well as pathophysiologically significant extracellular ion transients. In this work I have studied molecular mechanisms and development of ion regulation and how these factors alter neuronal excitability and affect synaptic and non-synaptic transmission with a particular emphasis on intracellular pH and chloride (Cl-) regulation. Why is the regulation of acid-base equivalents (H+ and HCO3-) and Cl- of such interest and importance? First of all, GABAA-receptors are permeable to both HCO3- and Cl-. In the adult mammalian central nervous system (CNS) fast postsynaptic inhibition relies on GABAA-receptor mediated transmission. Today, excitatory effects of GABAA-receptors, both in mature neurons and during the early development, have been recognized and the significance of the dual actions of GABA on neuronal communication has become an interesting field of research. The transmembrane gradients of Cl- and HCO3- determine the reversal potential of GABAA-receptor mediated postsynaptic potentials and hence, the function of pH and Cl- regulatory proteins have profound consequences on GABAergic signaling and neuronal excitability. Secondly, perturbations in pH can cause a variety of changes in cellular function, many of them resulting from the interaction of protons with ionizable side chains of proteins. pH-mediated alterations of protein conformation in e.g. ion channels, transporters, and enzymes can powerfully modulate neurotransmission. In the context of pH homeostasis, the enzyme carbonic anhydrase (CA) needs to be taken into account in parallel with ion transporters: for CO2/HCO3- buffering to act in a fast manner, CO2 (de)hydration must be catalyzed by this enzyme. The acid-base equivalents that serve as substrates in the CO2 dehydration-hydration reaction are also engaged in many carrier and channel mediated ion movements. In such processes, CA activity is in key position to modulate transmembrane solute fluxes and their consequences. The bicarbonate transporters (BTs; SLC4) and the electroneutral cation-chloride cotransporters (CCCs; SLC12) belong the to large gene family of solute carriers (SLCs). In my work I have studied the physiological roles of the K+-Cl- cotransporter KCC2 (Slc12a5) and the Na+-driven Cl--HCO3- exchanger NCBE (Slc4a10) and the roles of these two ion transporters in the modualtion of neuronal communication and excitability in the rodent hippocampus. I have also examined the cellular localization and molecular basis of intracellular CA that has been shown to be essential for the generation of prolonged GABAergic excitation in the mature hippocampus. The results in my Thesis provide direct evidence for the view that the postnatal up-regulation of KCC2 accounts for the developmental shift from depolarizing to hyperpolarizing postsynaptic EGABA-A responses in rat hippocampal pyramidal neurons. The results also indicate that after KCC2 expression the developmental onset of excitatory GABAergic transmission upon intense GABAA-receptor stimulation depend on the expression of intrapyramidal CA, identified as the CA isoform VII. Studies on mice with targeted Slc4a10 gene disruption revealed an important role for NCBE in neuronal pH regulation and in pH-dependent modulation of neuronal excitability. Furthermore, this ion transporter is involved in the basolateral Na+ and HCO3- uptake in choroid plexus epithelial cells, and is thus likely to contribute to cerebrospinal fluid production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this Thesis was to evaluate the role of proangiogenic placental growth factor (PlGF), antiangiogenic endostatin and lymphangiogenic vascular endothelial growth factor (VEGF) -C as well as the receptors vascular endothelial growth factor receptor (VEGFR) -2 and VEGFR-3 during lung development and in development of lung injury in preterm infants. The studied growth factors were selected due to a close relationship with VEGF-A; a proangiogenic growth factor important in normal lung angiogenesis and lung injury in preterm infants. The thesis study consists of three analyses. I: Lung samples from fetuses, preterm and term infants without lung injury, as well as preterm infants with acute and chronic lung injury were stained by immunohistochemistry for PlGF, endostatin, VEGF-C, VEGFR-2 and VEGFR-3. II: Tracheal aspirate fluid (TAF) was collected in the early postnatal period from a patient population consisting of 59 preterm infants, half developing bronchopulmonary dysplasia (BPD) and half without BPD. PlGF, endostatin and VEGF-C concentrations were measured by commercial enzyme-linked immunosorbent assay (ELISA). III: Cord plasma was collected from very low birth weight (VLBW) (n=92) and term (n=48) infants in conjuncture with birth and endostatin concentrations were measured by ELISA. I: All growth factors and receptors studied were consistently stained in immunohistochemistry throughout development. For endostatin in early respiratory distress syndrome (RDS), no alveolar epithelial or macrophage staining was seen, whereas in late RDS and BPD groups, both alveolar epithelium and macrophages stained positively in approximately half of the samples. VEGFR-2 staining was fairly consistent, except for the fact that capillary endothelial staining in the BPD group was significantly decreased. II: During the first postnatal week in TAF mean PlGF concentrations were stable whereas mean endostatin and VEGF-C concentrations decreased. Higher concentrations of endostatin and VEGF-C correlated with lower birth weight (BW) and associated with administration of antenatal betamethasone. Parameters reflecting prenatal lung inflammation associated with lower PlGF, endostatin and VEGF-C concentrations. A higher mean supplemental fraction of inspired oxygen during the first 2 postnatal weeks (FiO2) correlated with higher endostatin concentrations. III: Endostatin concentrations in term infants were significantly higher than in VLBW infants. In VLBW infants higher endostatin concentrations associated with the development of BPD, this association remained significant after logistic regression analysis. We conclude that PlGF, endostatin and VEGF-C all have a physiological role in the developing lung. Also, the VEGFR-2 expression profile seems to reflect the ongoing differentiation of endothelia during development. Both endostatin and VEGFR-2 seem to be important in the development of BPD. During the latter part of the first postnatal week, preterm infants developing BPD have lower concentrations of VEGF-A in TAF. Our findings of disrupted VEGFR-2 staining in capillary and septal endothelium seen in the BPD group, as well as the increase in endostatin concentrations both in TAF and cord plasma associated with BPD, seem to strengthen the notion that there is a shift in the angiogenic balance towards a more antiangiogenic environment in BPD. These findings support the vascular hypothesis of BPD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.