8 resultados para phylogenetic comparative methods
em Helda - Digital Repository of University of Helsinki
Resumo:
The Caucasus region is a hotspot of biodiversity and is one of the few areas in the Northern Hemisphere which harbor Pleistocene glacial refugia. The region encompasses Armenia, Azerbaijan, Georgia, the southernmost European Russia, NE Turkey, and northern Iran. The study on fungal composition of the Caucasus region and its connection and possible contribution to the present mycota of Europe has largely escaped empirical scrutiny. Using taxonomic surveys, phylogenetic reconstruction methods, haplotype analysis, and similarity tests, this study has aimed to, 1) summarize the knowledge on the occurrence of corticioids and polypores in the Caucasus region, 2) resolve the phylogenetic relationships of selected, resupinate wood-inhabiting basidiomycetes for which the Caucasus region is currently the mere, or one of the noteworthy areas of distribution, and, 3) assess the similarity of Caucasian corticioid fungi to those of Europe and important areas in the Northern Hemisphere, and to examine the significance of the Caucasus region as a glacial refugium for these fungi. This study provides the first catalogue of corticioids and polypores (635 species) occurring in the Caucasus region. The phylogeny and systematics of the Caucasian resupinate taxa in focus has been resolved and the usefulness of some morphological characters has been re-evaluated. In this context, four new genera and two new species were described and five new combinations were proposed, two of which were supplemented with modern descriptions. The species composition of corticioids in the Caucasus region is found to be distinctly more similar to Europe and North America than to East Asia and India. The highest molecular diversity and within population pairwise distance for Peniophorella praetermissa has been detected in the Caucasus and East Asia, with the isolates of the latter area being highly divergent from the European ones. This, and the assignment of root haplotype to the Caucasian isolates in a haplotype network for Phlebia tuberucalta and P. livida, call attention to the role of the Caucasus region in shaping the current mycota of Europe.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
In the thesis it is discussed in what ways concepts and methodology developed in evolutionary biology can be applied to the explanation and research of language change. The parallel nature of the mechanisms of biological evolution and language change is explored along with the history of the exchange of ideas between these two disciplines. Against this background computational methods developed in evolutionary biology are taken into consideration in terms of their applicability to the study of historical relationships between languages. Different phylogenetic methods are explained in common terminology, avoiding the technical language of statistics. The thesis is on one hand a synthesis of earlier scientific discussion, and on the other an attempt to map out the problems of earlier approaches in addition to finding new guidelines in the study of language change on their basis. Primarily literature about the connections between evolutionary biology and language change, along with research articles describing applications of phylogenetic methods into language change have been used as source material. The thesis starts out by describing the initial development of the disciplines of evolutionary biology and historical linguistics, a process which right from the beginning can be seen to have involved an exchange of ideas concerning the mechanisms of language change and biological evolution. The historical discussion lays the foundation for the handling of the generalised account of selection developed during the recent few decades. This account is aimed for creating a theoretical framework capable of explaining both biological evolution and cultural change as selection processes acting on self-replicating entities. This thesis focusses on the capacity of the generalised account of selection to describe language change as a process of this kind. In biology, the mechanisms of evolution are seen to form populations of genetically related organisms through time. One of the central questions explored in this thesis is whether selection theory makes it possible to picture languages are forming populations of a similar kind, and what a perspective like this can offer to the understanding of language in general. In historical linguistics, the comparative method and other, complementing methods have been traditionally used to study the development of languages from a common ancestral language. Computational, quantitative methods have not become widely used as part of the central methodology of historical linguistics. After the fading of a limited popularity enjoyed by the lexicostatistical method since the 1950s, only in the recent years have also the computational methods of phylogenetic inference used in evolutionary biology been applied to the study of early language history. In this thesis the possibilities offered by the traditional methodology of historical linguistics and the new phylogenetic methods are compared. The methods are approached through the ways in which they have been applied to the Indo-European languages, which is the most thoroughly investigated language family using both the traditional and the phylogenetic methods. The problems of these applications along with the optimal form of the linguistic data used in these methods are explored in the thesis. The mechanisms of biological evolution are seen in the thesis as parallel in a limited sense to the mechanisms of language change, however sufficiently so that the development of a generalised account of selection is deemed as possibly fruiful for understanding language change. These similarities are also seen to support the validity of using phylogenetic methods in the study of language history, although the use of linguistic data and the models of language change employed by these models are seen to await further development.
Resumo:
Over the past years, much research on sarcomas based on low-resolution cytogenetic and molecular cytogenetic methods has been published, leading to the identification of genetic abnormalities partially underlying the tumourigenesis. Continued progress in the identification of genetic events such as copy number aberrations relies upon adapting the rapidly evolving high-resolution microarray technology, which will eventually provide novel insights into sarcoma biology, and targets for both diagnostics and drug development. The aim of this Thesis was to characterize DNA copy number changes that are involved in the pathogenesis of soft tissue leiomyosarcoma (LMS), dermatofibrosarcoma protuberans (DFSP), osteosarcoma (OS), malignant fibrous histiocytoma (MFH), and uterine leiomyosarcoma (ULMS) by applying fine resolution array comparative genomic hybridization (aCGH) technology. Both low- and high-grade LMS tumours showed distinct copy number patterns, in addition to sharing two minimal common regions of gains and losses. Small aberrations were detected by aCGH, which were beyond the resolution of chromosomal comparative genomic hybridization (cCGH). DFSP tumours analysed by aCGH showed gains in 17q, 22q, and 21 additional gained regions, but only one region (22q) with copy number loss. Recurrent amplicons identified in OS by aCGH were 12q11-q15, 8q, 6p12-p21, and 17p. Amplicons 12q and 17p were further characterized in detail. The amplicon at 17p was characterized by aCGH in low- and high-grade LMS, OS, and MFH. In all but one case this amplicon, with minimal common regions of gains at 17p11-p12, started with the distal loss of 17p13-pter. OS and high-grade LMS were grouped together as they showed a complex pattern of copy number gains and amplifications at 17p, whereas MFH and low-grade LMS showed a continuous pattern of copy number gains and amplification at 17p. In addition to the commonly gained and lost regions identified in ULMS by aCGH, various biological processes affected by these copy number changes were also indicated by pathway analysis. The three novel findings obtained in this work were: characterization of amplicon 17p in low- and high-grade LMS and MFH, profiles of DNA copy number changes in LMS, and detection of various pathways affected by copy number changes in ULMS. These studies have not been undertaken previously by aCGH technology, thus this Thesis adds new information regarding DNA copy number changes in sarcomas. In conclusion, the aCGH technique used in this Thesis has provided new insights into the genetics of sarcomas by detecting the precise regions affected by copy number changes and some potential candidate target genes within those regions, which had not been uncovered by previously applied low resolution techniques.
Resumo:
Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.
Resumo:
Metabolism is the cellular subsystem responsible for generation of energy from nutrients and production of building blocks for larger macromolecules. Computational and statistical modeling of metabolism is vital to many disciplines including bioengineering, the study of diseases, drug target identification, and understanding the evolution of metabolism. In this thesis, we propose efficient computational methods for metabolic modeling. The techniques presented are targeted particularly at the analysis of large metabolic models encompassing the whole metabolism of one or several organisms. We concentrate on three major themes of metabolic modeling: metabolic pathway analysis, metabolic reconstruction and the study of evolution of metabolism. In the first part of this thesis, we study metabolic pathway analysis. We propose a novel modeling framework called gapless modeling to study biochemically viable metabolic networks and pathways. In addition, we investigate the utilization of atom-level information on metabolism to improve the quality of pathway analyses. We describe efficient algorithms for discovering both gapless and atom-level metabolic pathways, and conduct experiments with large-scale metabolic networks. The presented gapless approach offers a compromise in terms of complexity and feasibility between the previous graph-theoretic and stoichiometric approaches to metabolic modeling. Gapless pathway analysis shows that microbial metabolic networks are not as robust to random damage as suggested by previous studies. Furthermore the amino acid biosynthesis pathways of the fungal species Trichoderma reesei discovered from atom-level data are shown to closely correspond to those of Saccharomyces cerevisiae. In the second part, we propose computational methods for metabolic reconstruction in the gapless modeling framework. We study the task of reconstructing a metabolic network that does not suffer from connectivity problems. Such problems often limit the usability of reconstructed models, and typically require a significant amount of manual postprocessing. We formulate gapless metabolic reconstruction as an optimization problem and propose an efficient divide-and-conquer strategy to solve it with real-world instances. We also describe computational techniques for solving problems stemming from ambiguities in metabolite naming. These techniques have been implemented in a web-based sofware ReMatch intended for reconstruction of models for 13C metabolic flux analysis. In the third part, we extend our scope from single to multiple metabolic networks and propose an algorithm for inferring gapless metabolic networks of ancestral species from phylogenetic data. Experimenting with 16 fungal species, we show that the method is able to generate results that are easily interpretable and that provide hypotheses about the evolution of metabolism.
Resumo:
Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.
Resumo:
Throughout the history of Linnean taxonomy, species have been described with varying degrees of justification. Many descriptions have been based on only a few ambiguous morphological characters. Moreover, species have been considered natural, well-defined units whereas higher taxa have been treated as disparate, non-existent creations. In the present thesis a few such cases were studied in detail. Often the species-level descriptions were based on only a few specimens and the variation previously thought to be interspecific was found to be intraspecific. In some cases morphological characters were sufficient to resolve the evolutionary relationships between the taxa, but generally more resolution was gained by the addition of molecular evidence. However, both morphological and molecular data were found to be deceptive in some cases. The DNA sequences of morphologically similar specimens were found to differ distinctly in some cases, whereas in other closely related species the morphology of specimens with identical DNA sequences differed substantially. This study counsels caution when evolutionary relationships are being studied utilizing only one source of evidence or a very limited number of characters (e.g. barcoding). Moreover, it emphasizes the importance of high quality data as well as the utilization of proper methods when making scientific inferences. Properly conducted analyses produce robust results that can be utilized in numerous interesting ways. The present thesis considered two such extensions of systematics. A novel hypothesis on the origin of bioluminescence in Elateriformia beetles is presented, tying it to the development of the clicking mechanism in the ancestors of these animals. An entirely different type of extension of systematics is the proposed high value of the white sand forests in maintaining the diversity of beetles in the Peruvian Amazon. White sand forests are under growing pressure from human activities that lead to deforestation. They were found to harbor an extremely diverse beetle fauna and many taxa were specialists living only in this unique habitat. In comparison to the predominant clay soil forests, considerably more elateroid beetles belonging to all studied taxonomic levels (species, genus, tribus, and subfamily) were collected in white sand forests. This evolutionary diversity is hypothesized to be due to a combination of factors: (1) the forest structure, which favors the fungus-plant interactions important for the elateroid beetles, (2) the old age of the forest type favoring survival of many evolutionary lineages and (3) the widespread distribution and fragmentation of the forests in the Miocene, favoring speciation.