22 resultados para perception tests
em Helda - Digital Repository of University of Helsinki
Resumo:
This study is an inquiry into three related topics in Aristotle’s psychology: the perception of seeing, the perception of past perception, and the perception of sleeping. Over the past decades, Aristotle’s account of the perception of perception has been studied in numerous articles and chapters of books. However, there is no monograph that attempts to give a comprehensive analysis of this account and to assess its relation and significance to Aristotle’s psychological theory in general as well as to other theories pertaining to the topics (e.g. theories of consciousness), be they ancient, medieval, modern, or contemporary. This study intends to fill this gap and to further the research into Aristotle’s philosophy and into the philosophy of mind. The present study is based on an accurate analysis of the sources, on their Platonic background, and on later interpretations within the commentary tradition up to the present. From a methodological point of view, this study represents systematically orientated research into the history of philosophy, in which special attention is paid to the philosophical problems inherent in the sources, to the distinctions drawn, and to the arguments put forward as well as to their philosophical assessment. In addition to contributing many new findings concerning the topics under discussion, this study shows that Aristotle’s account of the perception of perception substantially differs from many later theories of consciousness. This study also suggests that Aristotle be regarded as a consistent direct realist, not only in respect of sense perception, but also in respect of memory.
Resumo:
Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.
Resumo:
The human visual system has adapted to function in different lighting environments and responds to contrast instead of the amount of light as such. On the one hand, this ensures constancy of perception, for example, white paper looks white both in bright sunlight and in dim moonlight, because contrast is invariant to changes in overall light level. On the other hand, the brightness of the surfaces has to be reconstructed from the contrast signal because no signal from surfaces as such is conveyed to the visual cortex. In the visual cortex, the visual image is decomposed to local features by spatial filters that are selective for spatial frequency, orientation, and phase. Currently it is not known, however, how these features are subsequently integrated to form objects and object surfaces. In this thesis the integration mechanisms of achromatic surfaces were studied by psychophysically measuring the spatial frequency and orientation tuning of brightness perception. In addition, the effect of textures on the spread of brightness and the effect of phase of the inducing stimulus on brightness were measured. The novel findings of the thesis are that (1) a narrow spatial frequency band, independent of stimulus size and complexity, mediates brightness information (2) figure-ground brightness illusions are narrowly tuned for orientation (3) texture borders, without any luminance difference, are able to block the spread of brightness, and (4) edges and even- and odd-symmetric Gabors have a similar antagonistic effect on brightness. The narrow spatial frequency tuning suggests that only a subpopulation of neurons in V1 is involved in brightness perception. The independence of stimulus size and complexity indicates that the narrow tuning reflects hard-wired processing in the visual system. Further, it seems that figure-ground segregation and mechanisms integrating contrast polarities are closely related to the low level mechanisms of brightness perception. In conclusion, the results of the thesis suggest that a subpopulation of neurons in visual cortex selectively integrates information from different contrast polarities to reconstruct surface brightness.
Resumo:
The aim of this study was to explore the spirituality of Finnish academically gifted 12 13-year old pre-adolescents (N = 101). Their spirituality was investigated through the following three questions: (1) What is their relationship to religion? (2) How do they perceive transcendence? and (3) How does their search for meaning integrate into their lives? A total of 60 girls and 41 boys participated in the study. They attend a special school, Helsingin Suomalainen yhteiskoulu, in Helsinki, Finland. The school includes classes from grade 3 to upper secondary school and has an entrance test. This study is part of a research project called Actualizing Finnish Giftedness which is funded by the Finnish Academy between 2000 2007 and is led by Professor Tirri. The research project is based on Gardner s Multiple Intelligences theory (Gardner 1993) and on Hay s (1998) work on spirituality. The data in this study was gathered in 2003 and 2004. It includes both qualitative and quantitative material. The emphasis is on data gathered with interviews. The mixed method approach was used as the methodological framework for connecting the qualitative content analysis, phenomenological approach and the quantitative tests of this study. The results of the sub-studies are reported in full in the four original articles. First, the articles show that the pupils connect religion mainly with Christian institutions and do not consider religion and spirituality to overlap. Second, the articles show that the pupils believe in God and the interference of God in their lives and they think that reality includes a spiritual dimension. Third, the pupils had four kinds of existentially significant interests: personal, transcendental, cosmic and ethical. Cosmic interests were especially highlighted in the article concerning boys as nature and science were reported to be integral sources for their existential thinking. In addition, perceptions on God seemed to be connected to the individual s perception on the meaning of life. In RE, spiritual development has been a constant topic of interest since the late eighties. Likewise, recently in gifted education there have been discussions concerning spiritual intelligence (Gardner 1999) and spirituality of the gifted (Kerr & Cohn 2001). Based on the empirical results of the study, this study concludes that education wishing to promote spiritual development should aim at being existentially relevant to the pupils and use their existential search as an integrative framework for their individual talents and skills.
Resumo:
Diet is a major player in the maintenance of health and onset of many diseases of public health importance. The food choice is known to be largely influenced by sensory preferences. However, in many cases it is unclear whether these preferences and dietary behaviors are innate or acquired. The aim of this thesis work was to study the extent to which the individual differences in dietary responses, especially in liking for sweet taste, are influenced by genetic factors. Several traits measuring the responses to sweetness and other dietary variables were applied in four studies: in British (TwinsUK) and Finnish (FinnTwin12 and FinnTwin16) twin studies and in a Finnish migraine family study. All the subjects were adults and they participated in chemosensory measurements (taste and smell tests) and filled in food behavior questionnaires. Further, it was studied, whether the correlations among the variables are mediated by genetic or environmental factors and where in the genome the genes influencing the heritable traits are located. A study of young adult Finnish twins (FinnTwin16, n=4388) revealed that around 40% of the food use is attributable to genetic factors and that the common, childhood environment does not affect the food use even shortly after moving from the parents home. Both the family study (n=146) and the twin studies (British twins, n=663) showed that around half of the variation in the liking for sweetness is inherited. The same result was obtained both by the chemosensory measurements (heritability 41-49%) and the questionnaire variables (heritability 31-54%). By contrast, the intensity perception of sweetness or the responses to saltiness were not influenced by genetic factors. Further, a locus influencing the use-frequency of sweet foods was identified on chromosome 16p. A closer examination of the relationships among the variables based on 663 British twins revealed that several genetic and environmental correlations exist among the different measures of liking for sweetness. However, these correlations were not very strong (range 0.06-0.55) implying that the instruments used measure slightly different aspects of the phenomenon. In addition, the assessment of the associations among responses to fatty foods, dieting behaviors, and body mass index in twin populations (TwinsUK n=1027 and FinnTwin12 n=299) showed that the dieting behaviors (cognitive restraint, uncontrolled eating, and emotional eating) mediate the relationship between obesity and diet. In conclusion, the work increased the understanding of the background variables of human eating behavior. Genetic effects were shown to underlie the variation of many dietary traits, such as liking for sweet taste, use of sweet foods, and dieting behaviors. However, the responses to salty taste were shown to be mainly determined by environmental factors and thus should more easily be modifiable by dietary education, exposure, and learning than sweet taste preferences. Although additional studies are needed to characterize the genetic element located on chromosome 16 that influences the use-frequency of sweet foods, the results underline the importance of inherited factors on human eating behavior.
Resumo:
ALICE (A Large Ion Collider Experiment) is an experiment at CERN (European Organization for Nuclear Research), where a heavy-ion detector is dedicated to exploit the unique physics potential of nucleus-nucleus interactions at LHC (Large Hadron Collider) energies. In a part of that project, 716 so-called type V4 modules were assembles in Detector Laboratory of Helsinki Institute of Physics during the years 2004 - 2006. Altogether over a million detector strips has made this project the most massive particle detector project in the science history of Finland. One ALICE SSD module consists of a double-sided silicon sensor, two hybrids containing 12 HAL25 front end readout chips and some passive components, such has resistors and capacitors. The components are connected together by TAB (Tape Automated Bonding) microcables. The components of the modules were tested in every assembly phase with comparable electrical tests to ensure the reliable functioning of the detectors and to plot the possible problems. The components were accepted or rejected by the limits confirmed by ALICE collaboration. This study is concentrating on the test results of framed chips, hybrids and modules. The total yield of the framed chips is 90.8%, hybrids 96.1% and modules 86.2%. The individual test results have been investigated in the light of the known error sources that appeared during the project. After solving the problems appearing during the learning-curve of the project, the material problems, such as defected chip cables and sensors, seemed to induce the most of the assembly rejections. The problems were typically seen in tests as too many individual channel failures. Instead, the bonding failures rarely caused the rejections of any component. One sensor type among three different sensor manufacturers has proven to have lower quality than the others. The sensors of this manufacturer are very noisy and their depletion voltage are usually outside of the specification given to the manufacturers. Reaching 95% assembling yield during the module production demonstrates that the assembly process has been highly successful.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.
Resumo:
Most new drug molecules discovered today suffer from poor bioavailability. Poor oral bioavailability results mainly from poor dissolution properties of hydrophobic drug molecules, because the drug dissolution is often the rate-limiting event of the drug’s absorption through the intestinal wall into the systemic circulation. During the last few years, the use of mesoporous silica and silicon particles as oral drug delivery vehicles has been widely studied, and there have been promising results of their suitability to enhance the physicochemical properties of poorly soluble drug molecules. Mesoporous silica and silicon particles can be used to enhance the solubility and dissolution rate of a drug by incorporating the drug inside the pores, which are only a few times larger than the drug molecules, and thus, breaking the crystalline structure into a disordered, amorphous form with better dissolution properties. Also, the high surface area of the mesoporous particles improves the dissolution rate of the incorporated drug. In addition, the mesoporous materials can also enhance the permeability of large, hydrophilic drug substances across biological barriers. T he loading process of drugs into silica and silicon mesopores is mainly based on the adsorption of drug molecules from a loading solution into the silica or silicon pore walls. There are several factors that affect the loading process: the surface area, the pore size, the total pore volume, the pore geometry and surface chemistry of the mesoporous material, as well as the chemical nature of the drugs and the solvents. Furthermore, both the pore and the surface structure of the particles also affect the drug release kinetics. In this study, the loading of itraconazole into mesoporous silica (Syloid AL-1 and Syloid 244) and silicon (TOPSi and TCPSi) microparticles was studied, as well as the release of itraconazole from the microparticles and its stability after loading. Itraconazole was selected for this study because of its highly hydrophobic and poorly soluble nature. Different mesoporous materials with different surface structures, pore volumes and surface areas were selected in order to evaluate the structural effect of the particles on the loading degree and dissolution behaviour of the drug using different loading parameters. The loaded particles were characterized with various analytical methods, and the drug release from the particles was assessed by in vitro dissolution tests. The results showed that the loaded drug was apparently in amorphous form after loading, and that the loading process did not alter the chemical structure of the silica or silicon surface. Both the mesoporous silica and silicon microparticles enhanced the solubility and dissolution rate of itraconazole. Moreover, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. Finally, the mesoporous silicon particles loaded with itraconazole were found to be unstable under stressed conditions (at 38 qC and 70 % relative humidity).