5 resultados para one-electron oxidation

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on developing high-performance liquid chromatography (HPLC) methods that enable the investigation of formation of both primary and secondary oxidation products and thus can be used for oxidation mechanism studies of plant sterols. The applicability of the methods for following the oxidation reactions of plant sterols was evaluated by using oxidized stigmasterol and sterol mixture as model samples. An HPLC method with ultraviolet and fluorescence detection (HPLC-UV-FL) was developed. It allowed the specific detection of hydroperoxides with FL detection after post-column reagent addition. The formation of primary and secondary oxidation products and amount of unoxidized sterol could be followed by using UV detection. With the HPLC-UV-FL method, separation between oxides was essential and oxides of only one plant sterol could be quantified in one run. Quantification with UV can lead to inaccuracy of the results since the number of double bonds had effect on the UV absorbance. In the case of liquid chromatography-mass spectrometry (LC-MS), separation of oxides with different functionalities was important because some oxides of the same sterol have similar molecular weight and moreover epimers have similar fragmentation behaviour. On the other hand, coelution of different plant sterol oxides with the same functional group was acceptable since they differ in molecular weights. Results revealed that all studied plant sterols and cholesterol seem to have similar fragmentation behaviour, with only relative ion abundances being slightly different. The major advantage of MS detection coupled with LC separation is the capability to analyse totally or partly coeluting analytes if these have different molecular weights. The HPLC-UV-FL and LC-MS methods were demonstrated to be suitable for studying the photo-oxidation and thermo-oxidation reactions of plant sterols. The HPLC-UV-FL method was able to show different formation rates of hydroperoxides during photo-oxidation. The method also confirmed that plant sterols have similar photo-oxidation behaviour to cholesterol. When thermo-oxidation of plant sterols was investigated by HPLC-UV-FL and LC-MS, the results revealed that the formation and decomposition of individual hydroperoxides and secondary oxidation products could be studied. The methods used revealed that all of the plant sterols had similar thermo-oxidation behaviour when compared with each other, and the predominant reactions and oxidation rates were temperature dependent. Overall, these findings showed that with these LC methods the oxidation mechanisms of plant sterols can be examined in detail, including the formation and degradation of individual hydroperoxides and secondary oxidation products, with less sample pretreatment and without derivatization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radioactive particles from three locations were investigated for elemental composition, oxidation states of matrix elements, and origin. Instrumental techniques applied to the task were scanning electron microscopy, X-ray and gamma-ray spectrometry, secondary ion mass spectrometry, and synchrotron radiation based microanalytical techniques comprising X-ray fluorescence spectrometry, X-ray fluorescence tomography, and X-ray absorption near-edge structure spectroscopy. Uranium-containing low activity particles collected from Irish Sea sediments were characterized in terms of composition and distribution of matrix elements and the oxidation states of uranium. Indications of the origin were obtained from the intensity ratios and the presence of thorium, uranium, and plutonium. Uranium in the particles was found to exist mostly as U(IV). Studies on plutonium particles from Runit Island (Marshall Islands) soil indicated that the samples were weapon fuel fragments originating from two separate detonations: a safety test and a low-yield test. The plutonium in the particles was found to be of similar age. The distribution and oxidation states of uranium and plutonium in the matrix of weapon fuel particles from Thule (Greenland) sediments were investigated. The variations in intensity ratios observed with different techniques indicated more than one origin. Uranium in particle matrixes was mostly U(IV), but plutonium existed in some particles mainly as Pu(IV), and in others mainly as oxidized Pu(VI). The results demonstrated that the various techniques were effectively applied in the characterization of environmental radioactive particles. An on-line method was developed for separating americium from environmental samples. The procedure utilizes extraction chromatography to separate americium from light lanthanides, and cation exchange to concentrate americium before the final separation in an ion chromatography column. The separated radiochemically pure americium fraction is measured by alpha spectrometry. The method was tested with certified sediment and soil samples and found to be applicable for the analysis of environmental samples containing a wide range of Am-241 activity. Proceeding from the on-line method developed for americium, a method was also developed for separating plutonium and americium. Plutonium is reduced to Pu(III), and separated together with Am(III) throughout the procedure. Pu(III) and Am(III) are eluted from the ion chromatography column as anionic dipicolinate and oxalate complexes, respectively, and measured by alpha spectrometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using data from 2.9  fb-1 of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z′, and W′ bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z′ and W′ are further evaluated as a function of their gauge coupling strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using data from 2.9/fb of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G*(Randall-Sundrum graviton), Z', and W' bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z' and W' are further evaluated as a function of their gauge coupling strength.