3 resultados para nuclear C*-algebras
em Helda - Digital Repository of University of Helsinki
Resumo:
Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.
Resumo:
The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.