3 resultados para multipel regression
em Helda - Digital Repository of University of Helsinki
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.
Resumo:
This study examines the properties of Generalised Regression (GREG) estimators for domain class frequencies and proportions. The family of GREG estimators forms the class of design-based model-assisted estimators. All GREG estimators utilise auxiliary information via modelling. The classic GREG estimator with a linear fixed effects assisting model (GREG-lin) is one example. But when estimating class frequencies, the study variable is binary or polytomous. Therefore logistic-type assisting models (e.g. logistic or probit model) should be preferred over the linear one. However, other GREG estimators than GREG-lin are rarely used, and knowledge about their properties is limited. This study examines the properties of L-GREG estimators, which are GREG estimators with fixed-effects logistic-type models. Three research questions are addressed. First, I study whether and when L-GREG estimators are more accurate than GREG-lin. Theoretical results and Monte Carlo experiments which cover both equal and unequal probability sampling designs and a wide variety of model formulations show that in standard situations, the difference between L-GREG and GREG-lin is small. But in the case of a strong assisting model, two interesting situations arise: if the domain sample size is reasonably large, L-GREG is more accurate than GREG-lin, and if the domain sample size is very small, estimation of assisting model parameters may be inaccurate, resulting in bias for L-GREG. Second, I study variance estimation for the L-GREG estimators. The standard variance estimator (S) for all GREG estimators resembles the Sen-Yates-Grundy variance estimator, but it is a double sum of prediction errors, not of the observed values of the study variable. Monte Carlo experiments show that S underestimates the variance of L-GREG especially if the domain sample size is minor, or if the assisting model is strong. Third, since the standard variance estimator S often fails for the L-GREG estimators, I propose a new augmented variance estimator (A). The difference between S and the new estimator A is that the latter takes into account the difference between the sample fit model and the census fit model. In Monte Carlo experiments, the new estimator A outperformed the standard estimator S in terms of bias, root mean square error and coverage rate. Thus the new estimator provides a good alternative to the standard estimator.