24 resultados para moments estimation
em Helda - Digital Repository of University of Helsinki
Resumo:
Pro gradu työni käsittelee virolaisia mainoksia ja niiden kohderyhmiä. Tutkimusaihe on erityisen mielenkiintoinen, sillä virolaisesta mainonnasta on tehty kansainvälisellä tasolla varsin vähän tutkimuksia. Halusin pro gradu -työssäni selvittää, mitä analysoimillani mainoksilla halutaan viestiä, kenelle ne suunnataan sekä millaisin kielellisin ja kuvallisin keinoin niitä tuotetaan. Käytin tutkimuksen materiaalina kuutta Reval Hotels ketjun mainosta, jotka ovat ilmestyneet viron- ja/tai englanninkielisinä viimeisen kahden vuoden aikana lehdissä, esitteissä tai hotellissa pöytä- tai seinämainoksina. Tutkimukseni teoreettinen viitekehys perustui kolmeen erilaiseen näkökulmaan: mainostekstien tutkimukseen, semiotiikkaan sekä Pierre Bourdieun teoriaan symbolisesta pääomasta ja sosiaalisten luokkien eroista. Sosiologisen näkökulman käyttö oli perusteltua erityisesti sen uutuusarvon vuoksi, sillä Bourdieun teoriaa ei ole aikaisemmin hyödynnetty virolaisten mainosten tutkimuksessa. Mainosten kuvien ja tekstien analyysi osoitti, että mainokset olivat rakenteellisesti oikeaoppisesti laadittuja. Mainoksista löytyi lukuisia symbolisen pääoman elementtejä, kuten englannin kieli, raha, aika, tehokkuus ja eurooppalaisuus. Mainokset olivat samalla varsin konservatiivisia ja yllätyksettömiä. Materiaalin joukosta erottui kuitenkin yksi mainos, jolla rikottiin perinteisen mainostamisen kaavaa ja josta avautui paljon erilaisia merkityksiä. Johtopäätöksenä voitiin muun muassa todeta, että Reval Hotels voi markkinointistrategiaansa kehittämällä hankkia itselleen uusia tuottavia kohderyhmiä. Pro gradu työtäni voi myöhemmin laajentaa esimerkiksi vertailevaksi jatkotutkimukseksi, jossa tarkastellaan useampien Virossa toimivien hotellien mainontaa.
Resumo:
There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg/yr for understorey spruce to 7 kg/yr for dominant pine) when the trees were 100 years old. Tree biomass was estimated to be about 70 Mg/ha in Young-Stand and about 220 Mg/ha in Mature-Stand. In the region (58.00-62.13 ºN, 14-34 ºE, ≤ 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg/ha at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg/ha with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg/ha. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
This study examines the properties of Generalised Regression (GREG) estimators for domain class frequencies and proportions. The family of GREG estimators forms the class of design-based model-assisted estimators. All GREG estimators utilise auxiliary information via modelling. The classic GREG estimator with a linear fixed effects assisting model (GREG-lin) is one example. But when estimating class frequencies, the study variable is binary or polytomous. Therefore logistic-type assisting models (e.g. logistic or probit model) should be preferred over the linear one. However, other GREG estimators than GREG-lin are rarely used, and knowledge about their properties is limited. This study examines the properties of L-GREG estimators, which are GREG estimators with fixed-effects logistic-type models. Three research questions are addressed. First, I study whether and when L-GREG estimators are more accurate than GREG-lin. Theoretical results and Monte Carlo experiments which cover both equal and unequal probability sampling designs and a wide variety of model formulations show that in standard situations, the difference between L-GREG and GREG-lin is small. But in the case of a strong assisting model, two interesting situations arise: if the domain sample size is reasonably large, L-GREG is more accurate than GREG-lin, and if the domain sample size is very small, estimation of assisting model parameters may be inaccurate, resulting in bias for L-GREG. Second, I study variance estimation for the L-GREG estimators. The standard variance estimator (S) for all GREG estimators resembles the Sen-Yates-Grundy variance estimator, but it is a double sum of prediction errors, not of the observed values of the study variable. Monte Carlo experiments show that S underestimates the variance of L-GREG especially if the domain sample size is minor, or if the assisting model is strong. Third, since the standard variance estimator S often fails for the L-GREG estimators, I propose a new augmented variance estimator (A). The difference between S and the new estimator A is that the latter takes into account the difference between the sample fit model and the census fit model. In Monte Carlo experiments, the new estimator A outperformed the standard estimator S in terms of bias, root mean square error and coverage rate. Thus the new estimator provides a good alternative to the standard estimator.
Resumo:
One of the most fundamental and widely accepted ideas in finance is that investors are compensated through higher returns for taking on non-diversifiable risk. Hence the quantification, modeling and prediction of risk have been, and still are one of the most prolific research areas in financial economics. It was recognized early on that there are predictable patterns in the variance of speculative prices. Later research has shown that there may also be systematic variation in the skewness and kurtosis of financial returns. Lacking in the literature so far, is an out-of-sample forecast evaluation of the potential benefits of these new more complicated models with time-varying higher moments. Such an evaluation is the topic of this dissertation. Essay 1 investigates the forecast performance of the GARCH (1,1) model when estimated with 9 different error distributions on Standard and Poor’s 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of variance from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. In Essay 2, by using 20 years of daily Standard and Poor 500 index returns, it is found that density forecasts are much improved by allowing for constant excess kurtosis but not improved by allowing for skewness. By allowing the kurtosis and skewness to be time varying the density forecasts are not further improved but on the contrary made slightly worse. In Essay 3 a new model incorporating conditional variance, skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution is proposed. The new model and two previously used NIG models are evaluated by their Value at Risk (VaR) forecasts on a long series of daily Standard and Poor’s 500 returns. The results show that only the new model produces satisfactory VaR forecasts for both 1% and 5% VaR Taken together the results of the thesis show that kurtosis appears not to exhibit predictable time variation, whereas there is found some predictability in the skewness. However, the dynamic properties of the skewness are not completely captured by any of the models.
Resumo:
A better understanding of stock price changes is important in guiding many economic activities. Since prices often do not change without good reasons, searching for related explanatory variables has involved many enthusiasts. This book seeks answers from prices per se by relating price changes to their conditional moments. This is based on the belief that prices are the products of a complex psychological and economic process and their conditional moments derive ultimately from these psychological and economic shocks. Utilizing information about conditional moments hence makes it an attractive alternative to using other selective financial variables in explaining price changes. The first paper examines the relation between the conditional mean and the conditional variance using information about moments in three types of conditional distributions; it finds that the significance of the estimated mean and variance ratio can be affected by the assumed distributions and the time variations in skewness. The second paper decomposes the conditional industry volatility into a concurrent market component and an industry specific component; it finds that market volatility is on average responsible for a rather small share of total industry volatility — 6 to 9 percent in UK and 2 to 3 percent in Germany. The third paper looks at the heteroskedasticity in stock returns through an ARCH process supplemented with a set of conditioning information variables; it finds that the heteroskedasticity in stock returns allows for several forms of heteroskedasticity that include deterministic changes in variances due to seasonal factors, random adjustments in variances due to market and macro factors, and ARCH processes with past information. The fourth paper examines the role of higher moments — especially skewness and kurtosis — in determining the expected returns; it finds that total skewness and total kurtosis are more relevant non-beta risk measures and that they are costly to be diversified due either to the possible eliminations of their desirable parts or to the unsustainability of diversification strategies based on them.
Resumo:
This paper estimates the extent of income underreporting by the self-employed in Finland using the expenditure based approach developed by Pissarides & Weber (1989). Household spending data are for the years 1994 to 1996. The results suggest that self-employment income in Finland is underreported by some 27% on average. Since income for the self-employed is about 8 % of all incomes in Finland, the size of this part of the black economy in Finland is estimated to be about 2,3% of GDP.
Resumo:
The objective of this paper is to investigate the pricing accuracy under stochastic volatility where the volatility follows a square root process. The theoretical prices are compared with market price data (the German DAX index options market) by using two different techniques of parameter estimation, the method of moments and implicit estimation by inversion. Standard Black & Scholes pricing is used as a benchmark. The results indicate that the stochastic volatility model with parameters estimated by inversion using the available prices on the preceding day, is the most accurate pricing method of the three in this study and can be considered satisfactory. However, as the same model with parameters estimated using a rolling window (the method of moments) proved to be inferior to the benchmark, the importance of stable and correct estimation of the parameters is evident.