23 resultados para molecule reactions

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells are packed with membrane structures, defining the inside and outside, and the different subcellular compartments. These membranes consisting mainly of phospholipids have a variety of functions in addition to providing a permeability barrier for various compounds. These functions involve cellular signaling, where lipids can act as second messengers, or direct regulation of membrane associating proteins. The first part of this study focuses on relating some of the physicochemical properties of membrane lipids to the association of drug compounds to membranes. A fluorescence based method is described allowing for determination of the membrane association of drugs. This method was subsequently applied to a novel drug, siramesine, previously shown to have anti-cancer activity. Siramesine was found to associate with anionic lipids. Especially interesting is its strong affinity for a second messenger lipid phosphatidic acid. This is the first example of a small molecule drug compound specifically interacting with a cellular lipid. Phosphatidic acid in cells is required for the activation of many signaling pathways mediating growth and proliferation. This provides an intriguing possibility for a simple molecular mechanism of the observed anti-cancer activity of siramesine. In the second part the thermal behavior and self assembly of charged and uncharged membrane assemblies was studied. Strong inter-lamellar co-operativity was observed for multilamellar DPPC vesicles using fluorescence techniques together with calorimetry. The commonly used membrane models, large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) were found to possess different biophysical properties as interlamellar interactions of MLVs drive segregation of a pyrene labeled lipid analogue into clusters. The effect of a counter-ion lattice on the self assembly of a cationic gemini surfactant was studied. The presence of NaCl strongly influenced the thermal phase behavior of M-1 vesicles, causing formation of giant vesicles upon exceeding a phase transition temperature, followed by a subsequent transition into a more homogenous dispersion. Understanding the underlying biophysical aspects of cellular membranes is of fundamental importance as the complex picture of the structure and function of cells is evolving. Many of the cellular reactions take place on membranes and membranes are known to regulate the activity of many peripheral and intergral membrane associating proteins. From the point of view of drug design and gene technology, membranes can provide an interesting target for future development of drugs, but also a vehicle sensitive for environmental changes allowing for encapsulating drugs and targeting them to the desired site of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases, EC 3.6.1.1) hydrolyse pyrophosphate in a reaction that provides the thermodynamic 'push' for many reactions in the cell, including DNA and protein synthesis. Soluble PPases can be classified into two families that differ completely in both sequence and structure. While Family I PPases are found in all kingdoms, family II PPases occur only in certain prokaryotes. The enzyme from baker's yeast (Saccharomyces cerevisiae) is very well characterised both kinetically and structurally, but the exact mechanism has remained elusive. The enzyme uses divalent cations as cofactors; in vivo the metal is magnesium. Two metals are permanently bound to the enzyme, while two come with the substrate. The reaction cycle involves the activation of the nucleophilic oxygen and allows different pathways for product release. In this thesis I have solved the crystal structures of wild type yeast PPase and seven active site variants in the presence of the native cofactor magnesium. These structures explain the effects of the mutations and have allowed me to describe each intermediate along the catalytic pathway with a structure. Although establishing the ʻchoreographyʼ of the heavy atoms is an important step in understanding the mechanism, hydrogen atoms are crucial for the mechanism. The most unambiguous method to determine the positions of these hydrogen atoms is neutron crystallography. In order to determine the neutron structure of yeast PPase I perdeuterated the enzyme and grew large crystals of it. Since the crystals were not stable at ambient temperature, a cooling device was developed to allow neutron data collection. In order to investigate the structural changes during the reaction in real time by time-resolved crystallography a photolysable substrate precursor is needed. I synthesised a candidate molecule and characterised its photolysis kinetics, but unfortunately it is hydrolysed by both yeast and Thermotoga maritima PPases. The mechanism of Family II PPases is subtly different from Family I. The native metal cofactor is manganese instead of magnesium, but the metal activation is more complex because the metal ions that arrive with the substrate are magnesium different from those permanently bound to the enzyme. I determined the crystal structures of wild type Bacillus subtilis PPase with the inhibitor imidodiphosphate and an inactive H98Q variant with the substrate pyrophosphate. These structures revealed a new trimetal site that activates the nucleophile. I also determined that the metal ion sites were partially occupied by manganese and iron using anomalous X- ray scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimeric phenolic compounds lignans and dilignols form in the so-called oxidative coupling reaction of phenols. Enzymes such as peroxidases and lac-cases catalyze the reaction using hydrogen peroxide or oxygen respectively as oxidant generating phenoxy radicals which couple together according to certain rules. In this thesis, the effects of the structures of starting materials mono-lignols and the effects of reaction conditions such as pH and solvent system on this coupling mechanism and on its regio- and stereoselectivity have been studied. After the primary coupling of two phenoxy radicals a very reactive quinone me-thide intermediate is formed. This intermediate reacts quickly with a suitable nucleophile which can be, for example, an intramolecular hydroxyl group or another nucleophile such as water, methanol, or a phenolic compound in the reaction system. This reaction is catalyzed by acids. After the nucleophilic addi-tion to the quinone methide, other hydrolytic reactions, rearrangements, and elimination reactions occur leading finally to stable dimeric structures called lignans or dilignols. Similar reactions occur also in the so-called lignification process when monolignol (or dilignol) reacts with the growing lignin polymer. New kinds of structures have been observed in this thesis. The dimeric com-pounds with so-called spirodienone structure have been observed to form both in the dehydrodimerization of methyl sinapate and in the beta-1-type cross-coupling reaction of two different monolignols. This beta-1-type dilignol with a spirodienone structure was the first synthetized and published dilignol model compound, and at present, it has been observed to exist as a fundamental construction unit in lignins. The enantioselectivity of the oxidative coupling reaction was also studied for obtaining enantiopure lignans and dilignols. A rather good enantioselectivity was obtained in the oxidative coupling reaction of two monolignols with chiral auxiliary substituents using peroxidase/H2O2 as an oxidation system. This observation was published as one of the first enantioselective oxidative coupling reaction of phenols. Pure enantiomers of lignans were also obtained by using chiral cryogenic chromatography as a chiral resolution technique. This technique was shown to be an alternative route to prepare enantiopure lignans or lignin model compounds in a preparative scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the kinetics of several alkyl, halogenated alkyl, and alkenyl free radical reactions with NO2, O2, Cl2, and HCl reactants were studied over a wide temperature range in time resolved conditions. Laser photolysis photoionisation mass spectrometer coupled to a flow reactor was the experimental method employed and this thesis present the first measurements performed with the experimental system constructed. During this thesis a great amount of work was devoted to the designing, building, testing, and improving the experimental apparatus. Carbon-centred free radicals were generated by the pulsed 193 or 248 nm photolysis of suitable precursors along the tubular reactor. The kinetics was studied under pseudo-first-order conditions using either He or N2 buffer gas. The temperature and pressure ranges employed were between 190 and 500 K, and 0.5 45 torr, respectively. The possible role of heterogeneous wall reactions was investigated employing reactor tubes with different sizes, i.e. to significantly vary the surface to volume ratio. In this thesis, significant new contributions to the kinetics of carbon-centred free radical reactions with nitrogen dioxide were obtained. Altogether eight substituted alkyl (CH2Cl, CHCl2, CCl3, CH2I, CH2Br, CHBr2, CHBrCl, and CHBrCH3) and two alkenyl (C2H3, C3H3) free radical reactions with NO2 were investigated as a function of temperature. The bimolecular rate coefficients of all these reactions were observed to possess negative temperature dependencies, while pressure dependencies were not noticed for any of these reactions. Halogen substitution was observed to moderately reduce the reactivity of substituted alkyl radicals in the reaction with NO2, while the resonance stabilisation of the alkenyl radical lowers its reactivity with respect to NO2 only slightly. Two reactions relevant to atmospheric chemistry, CH2Br + O2 and CH2I + O2, were also investigated. It was noticed that while CH2Br + O2 reaction shows pronounced pressure dependence, characteristic of peroxy radical formation, no such dependence was observed for the CH2I + O2 reaction. Observed primary products of the CH2I + O2 reaction were the I-atom and the IO radical. Kinetics of CH3 + HCl, CD3 + HCl, CH3 + DCl, and CD3 + DCl reactions were also studied. While all these reactions possess positive activation energies, in contrast to the other systems investigated in this thesis, the CH3 + HCl and CD3 + HCl reactions show a non-linear temperature dependency on the Arrhenius plot. The reactivity of substituted methyl radicals toward NO2 was observed to increase with decreasing electron affinity of the radical. The same trend was observed for the reactions of substituted methyl radicals with Cl2. It is proposed that interactions of frontier orbitals are responsible to these observations and Frontier Orbital Theory could be used to explain the observed reactivity trends of these highly exothermic reactions having reactant-like transition states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion and extracellular matrix (ECM) molecules play a significant role in neuronal plasticity both during development and in the adult. Plastic changes in which ECM components are implicated may underlie important nervous system functions, such as memory formation and learning. Heparin-binding growthassociated molecule (HB-GAM, also known as pleiotrophin), is an ECM protein involved in neurite outgrowth, axonal guidance and synaptogenesis during perinatal period. In the adult brain HB-GAM expression is restricted to the regions which display pronounced synaptic plasticity (e.g., hippocampal CA3-CA1 areas, cerebral cortex laminae II-IV, olfactory bulb). Expression of HB-GAM is regulated in an activity-dependent manner and is also induced in response to neuronal injury. In this work mutant mice were used to study the in vivo function of HB-GAM and its receptor syndecan-3 in hippocampal synaptic plasticity and in hippocampus-dependent behavioral tasks. Phenotypic analysis of HBGAM null mutants and mice overexpressing HB-GAM revealed that opposite genetic manipulations result in reverse changes in synaptic plasticity as well as behavior in the mutants. Electrophysiological recordings showed that mice lacking HB-GAM have an increased level of long-term potentiation (LTP) in the area CA1 of hippocampus and impaired spatial learning, whereas animals with enhanced level of HB-GAM expression have attenuated LTP, but outperformed their wild-type controls in spatial learning. It was also found that GABA(A) receptor-mediated synaptic transmission is altered in the transgenic mice overexpressing HB-GAM. The results suggest that these animals have accentuated hippocampal GABAergic inhibition, which may contribute to the altered glutamatergic synaptic plasticity. Structural studies of HB-GAM demonstrated that this protein belongs to the thrombospondin type I repeat (TSR) superfamily and contains two β-sheet domains connected by a flexible linker. It was found that didomain structure is necessary for biological activity of HB-GAM and electrophysiological phenotype displayed by the HB-GAM mutants. The individual domains displayed weaker binding to heparan sulfate and failed to promote neurite outgrowth as well as affect hippocampal LTP. Effects of HB-GAM on hippocampal synaptic plasticity are believed to be mediated by one of its (co-)receptor molecules, namely syndecan-3. In support of that, HB-GAM did not attenuate LTP in mice deficient in syndecan-3 as it did in wild-type controls. In addition, syndecan-3 knockout mice displayed electrophysiological and behavioral phenotype similar to that of HB-GAM knockouts (i.e. enhanced LTP and impaired learning in Morris water-maze). Thus HB-GAM and syndecan-3 are important modulators of synaptic plasticity in hippocampus and play a role in regulation of learning-related behavior.