11 resultados para micelar electrokinetic chromatography
em Helda - Digital Repository of University of Helsinki
Resumo:
Foreign compounds, such as drugs are metabolised in the body in numerous reactions. Metabolic reactions are divided into phase I (functionalisation) and phase II (conjugation) reactions. Uridine diphosphoglucuronosyltransferase enzymes (UGTs) are important catalysts of phase II metabolic system. They catalyse the transfer of glucuronic acid to small lipophilic molecules and convert them to hydrophilic and polar glucuronides that are readily excreted from the body. Liver is the main site of drug metabolism. Many drugs are racemic mixtures of two enantiomers. Glucuronidation of a racemic compound yields a pair of diastereomeric glucuronides. Stereoisomers are interesting substrates in glucuronidation studies since some UGTs display stereoselectivity. Diastereomeric glucuronides of O-desmethyltramadol (M1) and entacapone were selected as model compounds in this work. The investigations of the thesis deal with enzymatic glucuronidation and the development of analytical methods for drug metabolites, particularly diastereomeric glucuronides. The glucuronides were analysed from complex biological matrices, such as urine or from in vitro incubation matrices. Various pretreatment techniques were needed to purify, concentrate and isolate the analytes of interest. Analyses were carried out by liquid chromatography (LC) with ultraviolet (UV) or mass spectrometric (MS) detection or with capillary electromigration techniques. Commercial glucuronide standards were not available for the studies. Enzyme-assisted synthesis with rat liver microsomes was therefore used to produce M1 glucuronides as reference compounds. The glucuronides were isolated by LC/UV and ultra performance liquid chromatography (UPLC)/MS, while tandem mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed in structural characterisation. The glucuronides were identified as phenolic O-glucuronides of M1. To identify the active UGT enzymes in (±)-M1 glucuronidation recombinant human UGTs and human tissue microsomes were incubated with (±)-M1. The study revealed that several UGTs can catalyse (±)-M1 glucuronidation. Glucuronidation in human liver microsomes like in rat liver microsomes is stereoselective. The results of the studies showed that UGT2B7, most probably, is the main UGT responsible for (±)-M1 glucuronidation in human liver. Large variation in stereoselectivity of UGTs toward (±)-M1 enantiomers was observed. Formation of M1 glucuronides was monitored with a fast and selective UPLC/MS method. Capillary electromigration techniques are known for their high resolution power. A method that relied on capillary electrophoresis (CE) with UV detection was developed for the separation of tramadol and its free and glucuronidated metabolites. The suitability of the method to identify tramadol metabolites in an authentic urine samples was tested. Unaltered tramadol and four of its main metabolites were detected in the electropherogram. A micellar electrokinetic chromatography (MEKC) /UV method was developed for the separation of the glucuronides of entacapone in human urine. The validated method was tested in the analysis of urine samples of patients. The glucuronides of entacapone could be quantified after oral entacapone dosing.
Resumo:
Determination of testosterone and related compounds in body fluids is of utmost importance in doping control and the diagnosis of many diseases. Capillary electromigration techniques are a relatively new approach for steroid research. Owing to their electrical neutrality, however, separation of steroids by capillary electromigration techniques requires the use of charged electrolyte additives that interact with the steroids either specifically or non-specifically. The analysis of testosterone and related steroids by non-specific micellar electrokinetic chromatography (MEKC) was investigated in this study. The partial filling (PF) technique was employed, being suitable for detection by both ultraviolet spectrophotometry (UV) and electrospray ionization mass spectrometry (ESI-MS). Efficient, quantitative PF-MEKC UV methods for steroid standards were developed through the use of optimized pseudostationary phases comprising surfactants and cyclodextrins. PF-MEKC UV proved to be a more sensitive, efficient and repeatable method for the steroids than PF-MEKC ESI-MS. It was discovered that in PF-MEKC analyses of electrically neutral steroids, ESI-MS interfacing sets significant limitations not only on the chemistry affecting the ionization and detection processes, but also on the separation. The new PF-MEKC UV method was successfully employed in the determination of testosterone in male urine samples after microscale immunoaffinity solid-phase extraction (IA-SPE). The IA-SPE method, relying on specific interactions between testosterone and a recombinant anti-testosterone Fab fragment, is the first such method described for testosterone. Finally, new data for interactions between steroids and human and bovine serum albumins were obtained through the use of affinity capillary electrophoresis. A new algorithm for the calculation of association constants between proteins and neutral ligands is introduced.
Resumo:
This thesis discusses the use of sub- and supercritical fluids as the medium in extraction and chromatography. Super- and subcritical extraction was used to separate essential oils from herbal plant Angelica archangelica. The effect of extraction parameters was studied and sensory analyses of the extracts were done by an expert panel. The results of the sensory analyses were compared to the analytically determined contents of the extracts. Sub- and supercritical fluid chromatography (SFC) was used to separate and purify high-value pharmaceuticals. Chiral SFC was used to separate the enantiomers of racemic mixtures of pharmaceutical compounds. Very low (cryogenic) temperatures were applied to substantially enhance the separation efficiency of chiral SFC. The thermodynamic aspects affecting the resolving ability of chiral stationary phases are briefly reviewed. The process production rate which is a key factor in industrial chromatography was optimized by empirical multivariate methods. General linear model was used to optimize the separation of omega-3 fatty acid ethyl esters from esterized fish oil by using reversed-phase SFC. Chiral separation of racemic mixtures of guaifenesin and ferulic acid dimer ethyl ester was optimized by using response surface method with three variables per time. It was found that by optimizing four variables (temperature, load, flowate and modifier content) the production rate of the chiral resolution of racemic guaifenesin by cryogenic SFC could be increased severalfold compared to published results of similar application. A novel pressure-compensated design of industrial high pressure chromatographic column was introduced, using the technology developed in building the deep-sea submersibles (Mir 1 and 2). A demonstration SFC plant was built and the immunosuppressant drug cyclosporine A was purified to meet the requirements of US Pharmacopoeia. A smaller semi-pilot size column with similar design was used for cryogenic chiral separation of aromatase inhibitor Finrozole for use in its development phase 2.
Resumo:
The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.
Resumo:
Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Human sport doping control analysis is a complex and challenging task for anti-doping laboratories. The List of Prohibited Substances and Methods, updated annually by World Anti-Doping Agency (WADA), consists of hundreds of chemically and pharmacologically different low and high molecular weight compounds. This poses a considerable challenge for laboratories to analyze for them all in a limited amount of time from a limited sample aliquot. The continuous expansion of the Prohibited List obliges laboratories to keep their analytical methods updated and to research new available methodologies. In this thesis, an accurate mass-based analysis employing liquid chromatography - time-of-flight mass spectrometry (LC-TOFMS) was developed and validated to improve the power of doping control analysis. New analytical methods were developed utilizing the high mass accuracy and high information content obtained by TOFMS to generate comprehensive and generic screening procedures. The suitability of LC-TOFMS for comprehensive screening was demonstrated for the first time in the field with mass accuracies better than 1 mDa. Further attention was given to generic sample preparation, an essential part of screening analysis, to rationalize the whole work flow and minimize the need for several separate sample preparation methods. Utilizing both positive and negative ionization allowed the detection of almost 200 prohibited substances. Automatic data processing produced a Microsoft Excel based report highlighting the entries fulfilling the criteria of the reverse data base search (retention time (RT), mass accuracy, isotope match). The quantitative performance of LC-TOFMS was demonstrated with morphine, codeine and their intact glucuronide conjugates. After a straightforward sample preparation the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The hydrophilic interaction technique (HILIC) provided good chromatographic separation, which was critical for the morphine glucuronide isomers. A wide linear range (50-5000 ng/ml) with good precision (RSD<10%) and accuracy (±10%) was obtained, showing comparable or better performance to other methods used. In-source collision-induced dissociation (ISCID) allowed confirmation analysis with three diagnostic ions with a median mass accuracy of 1.08 mDa and repeatable ion ratios fulfilling WADA s identification criteria. The suitability of LC-TOFMS for screening of high molecular weight doping agents was demonstrated with plasma volume expanders (PVE), namely dextran and hydroxyethylstarch (HES). Specificity of the assay was improved, since interfering matrix compounds were removed by size exclusion chromatography (SEC). ISCID produced three characteristic ions with an excellent mean mass accuracy of 0.82 mDa at physiological concentration levels. In summary, by combining TOFMS with a proper sample preparation and chromatographic separation, the technique can be utilized extensively in doping control laboratories for comprehensive screening of chemically different low and high molecular weight compounds, for quantification of threshold substances and even for confirmation. LC-TOFMS rationalized the work flow in doping control laboratories by simplifying the screening scheme, expediting reporting and minimizing the analysis costs. Therefore LC-TOFMS can be exploited widely in doping control, and the need for several separate analysis techniques is reduced.