31 resultados para membrane diffusion

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-negative bacteria are harmful in various surroundings. In the food industy their metabolites are potential cause of spoilage and this group also includes many severe or potential pathogens, such as Salmonella. Due to their ability to produce biofilms Gram-negative bacteria also cause problems in many industrial processes as well as in clinical surroundings. Control of Gram-negative bacteria is hampered by the outer membrane (OM) in the outermost layer of the cells. This layer is an intrinsic barrier for many hydrophobic agents and macromolecules. Permeabilizers are compounds that weaken OM and can thus increase the activity of antimicrobials by facililating entry of hydrophobic compounds and macromolecules into the cell where they can reach their target sites and inhibit or destroy cellular functions. The work described in this thesis shows that lactic acid acts as a permeabilizer and destabilizes the OM of Gram-negative bacteria. In addition, organic acids present in berriers, i.e. malic, sorbic and benzoic acid, were shown to weaken the OM of Gram-negative bacteria. Organic acids can poteniate the antimicrobial activity of other compounds. Microbial colonic degradation products of plant-derived phenolic compounds (3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylpropionic acid, 4-hydroxyphenylpropionic acid, 3-phenylpropionic acid and 3-hydroxyphenylpropionic acid) efficiently destabilized OM of Salmonella. The studies increase our understanding of the mechanism of action of the classical chelator, ethylenediaminetetra-acetic acid (EDTA). In addition, the results indicate that the biocidic activity of benzalkonium chloride against Pseudomonas can be increased by combined use with polyethylenimine (PEI). In addition to PEI, several other potential permeabilizers, such as succimer, were shown to destabilize the OM of Gram-negative bacteria. Furthermore, combination of the results obtained from various permeability assays (e.g. uptake of a hydrophobic probe, sensitization to hydrophobic antibiotics and detergents, release of lipopolysaccharide (LPS) and LPS-specific fatty acids) with atomic force microscopy (AFM) image results increases our knowledge of the action of permeabilizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correct localization of proteins is essential for cell viability. In order to achieve correct protein localization to cellular membranes, conserved membrane targeting and translocation mechanisms have evolved. The focus of this work was membrane targeting and translocation of a group of proteins that circumvent the known targeting and translocation mechanisms, the C-tail anchored protein family. Members of this protein family carry out a wide range of functions, from protein translocation and recognition events preceding membrane fusion, to the regulation of programmed cell death. In this work, the mechanisms of membrane insertion and targeting of two C-tail anchored proteins were studied utilizing in vivo and in vitro methods, in yeast and mammalian cell systems. The proteins studied were cytochrome b(5), a well characterized C-tail anchored model protein, and N-Bak, a novel member of the Bcl-2 family of regulators of programmed cell death. Membrane insertion of cytochrome b(5) into the endoplasmic reticulum membrane was found to occur independently of the known protein conducting channels, through which signal peptide-containing polypeptides are translocated. In fact, the membrane insertion process was independent of any protein components and did not require energy. Instead membrane insertion was observed to be dependent on the lipid composition of the membrane. The targeting of N-Bak was found to depend on the cellular context. Either the mitochondrial or endoplasmic reticulum membranes were targeted, which resulted in morphological changes of the target membranes. These findings indicate the existence of a novel membrane insertion mechanism for C-tail anchored proteins, in which membrane integration of the transmembrane domain, and the translocation of C-terminal fragments, appears to be spontaneous. This mode of membrane insertion is regulated by the target membrane fluidity, which depends on the lipid composition of the bilayer, and the hydrophobicity of the transmembrane domain of the C-tail anchored protein, as well as by the availability of the C-tail for membrane integration. Together these mechanisms enable the cell to achieve spatial and temporal regulation of sub-cellular localization of C-tail anchored proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cells of multicellular organisms have differentiated to carry out specific functions that are often accompanied by distinct cell morphology. The actin cytoskeleton is one of the key regulators of cell shape subsequently controlling multiple cellular events including cell migration, cell division, endo- and exocytosis. A large set of actin regulating proteins has evolved to achieve and tightly coordinate this wide range of functions. Some actin regulator proteins have so-called house keeping roles and are essential for all eukaryotic cells, but some have evolved to meet the requirements of more specialized cell-types found in higher organisms enabling complex functions of differentiated organs, such as liver, kidney and brain. Often processes mediated by the actin cytoskeleton, like formation of cellular protrusions during cell migration, are intimately linked to plasma membrane remodeling. Thus, a close cooperation between these two cellular compartments is necessary, yet not much is known about the underlying molecular mechanisms. This study focused on a vertebrate-specific protein called missing-in-metastasis (MIM), which was originally characterized as a metastasis suppressor of bladder cancer. We demonstrated that MIM regulates the dynamics of actin cytoskeleton via its WH2 domain, and is expressed in a cell-type specific manner. Interestingly, further examination showed that the IM-domain of MIM displays a novel membrane tubulation activity, which induces formation of filopodia in cells. Following studies demonstrated that this membrane deformation activity is crucial for cell protrusions driven by MIM. In mammals, there are five members of IM-domain protein family. Functions and expression patterns of these family members have remained poorly characterized. To understand the physiological functions of MIM, we generated MIM knockout mice. MIM-deficient mice display no apparent developmental defects, but instead suffer from progressive renal disease and increased susceptibility to tumors. This indicates that MIM plays a role in the maintenance of specific physiological functions associated with distinct cell morphologies. Taken together, these studies implicate MIM both in the regulation of the actin cytoskeleton and the plasma membrane. Our results thus suggest that members of MIM/IRSp53 protein family coordinate the actin cytoskeleton:plasma membrane interface to control cell and tissue morphogenesis in multicellular organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis project is to study changes in the physical state of cell membranes during cell entry, including how these changes are connected to the presence of ceramide. The role of enzymatical manipulation of lipids in bacterial internalization is also studied. A novel technique, where a single giant vesicle is chosen under the microscope and an enzyme coupled-particle attached to the micromanipulator pipette towards the vesicle, is used. Thus, the enzymatic reaction on the membrane of the giant vesicle can be followed in real-time. The first aim of this study is to develop a system where the localized sphingomyelinase membrane interaction could be observed on the surface of the giant vesicle and the effects could be monitored with microscopy. Domain formation, which resembles acid sphingomyelinase (ASMase), causes CD95 clustering in the cell membrane due to ceramide production (Grassmé et al., 2001a; Grassmé et al., 2001b) and the formation of small vesicles inside the manipulated giant vesicle is observed. Sphingomyelinase activation has also been found to be an important factor in the bacterial and viral invasion process in nonphagocytic cells (Grassmé et al., 1997; Jan et al., 2000). Accordingly, sphingomyelinase reactions in the cell membrane might also give insight into bacterial or viral cellular entry events. We found sphingomyelinase activity in Chlamydia pneumonia elementarybodies (EBs). Interestingly, the bacterium enters host cells by endocytosis but the internalization mechanism of Chlamydia is unknown. The hypothesis is that sphingomyelin is needed for host cell entry in the infection of C. pneumonia. The second project focuses on this subject. The goal of the third project is to study a role of phosphatidylserine as a target for a membrane binding protein. Phosphatidylserine is chosen because of its importance in fusion processes. This will be another example for the importance of lipids in cell targeting, internalization, and externalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses are biological entities able to replicate only within their host cells. Accordingly, entry into the host is a crucial step of the virus life-cycle. The focus of this study was the entry of bacterial membrane-containing viruses into their host cells. In order to reach the site of replication, the cytoplasm of the host, bacterial viruses have to traverse the host cell envelope, which consists of several distinct layers. Lipid membrane is a common feature among animal viruses but not so frequently observed in bacteriophages. There are three families of icosahedral bacteriophages that contain lipid membranes. These viruses belong to families Cystoviridae, Tectiviridae, and Corticoviridae. During the course of this study the entry mechanisms of phages representing the three viral families were investigated. We employed a range of microbiological, biochemical, molecular biology and microscopy techniques that allowed us to dissect phage entry into discrete steps: receptor binding, penetration through the outer membrane, crossing the peptidoglycan layer and interaction with the cytoplasmic membrane. We determined that bacteriophages belonging to the Cystoviridae, Tectiviridae, and Corticoviridae viral families use completely different strategies to penetrate into their host cells.