5 resultados para meccanica quantistica Planck Heisenberg interdisciplinarietà modellizzazione
em Helda - Digital Repository of University of Helsinki
Resumo:
Aims: Develop and validate tools to estimate residual noise covariance in Planck frequency maps. Quantify signal error effects and compare different techniques to produce low-resolution maps. Methods: We derive analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a number of map-making approaches. We test these analytical predictions using Monte Carlo simulations and their impact on angular power spectrum estimation. We use simulations to quantify the level of signal errors incurred in different resolution downgrading schemes considered in this work. Results: We find an excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For destriping map-makers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen baseline offset length. The significance of signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the sub-percent level at multipoles, ell > 2Nside, where Nside is the HEALPix resolution parameter. We show that sufficient characterization of the residual noise is unavoidable if one is to draw reliable contraints on large scale anisotropy. Conclusions: We have described how to compute the low-resolution maps, with a controlled sky signal level, and a reliable estimate of covariance of the residual noise. We have also presented a method to smooth the residual noise covariance matrices to describe the noise correlations in smoothed, bandwidth limited maps.
Resumo:
This masters thesis explores some of the most recent developments in noncommutative quantum field theory. This old theme, first suggested by Heisenberg in the late 1940s, has had a renaissance during the last decade due to the firmly held belief that space-time becomes noncommutative at small distances and also due to the discovery that string theory in a background field gives rise to noncommutative field theory as an effective low energy limit. This has led to interesting attempts to create a noncommutative standard model, a noncommutative minimal supersymmetric standard model, noncommutative gravity theories etc. This thesis reviews themes and problems like those of UV/IR mixing, charge quantization, how to deal with the non-commutative symmetries, how to solve the Seiberg-Witten map, its connection to fluid mechanics and the problem of constructing general coordinate transformations to obtain a theory of noncommutative gravity. An emphasis has been put on presenting both the group theoretical results and the string theoretical ones, so that a comparison of the two can be made.
Resumo:
Cosmological inflation is the dominant paradigm in explaining the origin of structure in the universe. According to the inflationary scenario, there has been a period of nearly exponential expansion in the very early universe, long before the nucleosynthesis. Inflation is commonly considered as a consequence of some scalar field or fields whose energy density starts to dominate the universe. The inflationary expansion converts the quantum fluctuations of the fields into classical perturbations on superhorizon scales and these primordial perturbations are the seeds of the structure in the universe. Moreover, inflation also naturally explains the high degree of homogeneity and spatial flatness of the early universe. The real challenge of the inflationary cosmology lies in trying to establish a connection between the fields driving inflation and theories of particle physics. In this thesis we concentrate on inflationary models at scales well below the Planck scale. The low scale allows us to seek for candidates for the inflationary matter within extensions of the Standard Model but typically also implies fine-tuning problems. We discuss a low scale model where inflation is driven by a flat direction of the Minimally Supersymmetric Standard Model. The relation between the potential along the flat direction and the underlying supergravity model is studied. The low inflationary scale requires an extremely flat potential but we find that in this particular model the associated fine-tuning problems can be solved in a rather natural fashion in a class of supergravity models. For this class of models, the flatness is a consequence of the structure of the supergravity model and is insensitive to the vacuum expectation values of the fields that break supersymmetry. Another low scale model considered in the thesis is the curvaton scenario where the primordial perturbations originate from quantum fluctuations of a curvaton field, which is different from the fields driving inflation. The curvaton gives a negligible contribution to the total energy density during inflation but its perturbations become significant in the post-inflationary epoch. The separation between the fields driving inflation and the fields giving rise to primordial perturbations opens up new possibilities to lower the inflationary scale without introducing fine-tuning problems. The curvaton model typically gives rise to relatively large level of non-gaussian features in the statistics of primordial perturbations. We find that the level of non-gaussian effects is heavily dependent on the form of the curvaton potential. Future observations that provide more accurate information of the non-gaussian statistics can therefore place constraining bounds on the curvaton interactions.
Resumo:
The first quarter of the 20th century witnessed a rebirth of cosmology, study of our Universe, as a field of scientific research with testable theoretical predictions. The amount of available cosmological data grew slowly from a few galaxy redshift measurements, rotation curves and local light element abundances into the first detection of the cos- mic microwave background (CMB) in 1965. By the turn of the century the amount of data exploded incorporating fields of new, exciting cosmological observables such as lensing, Lyman alpha forests, type Ia supernovae, baryon acoustic oscillations and Sunyaev-Zeldovich regions to name a few. -- CMB, the ubiquitous afterglow of the Big Bang, carries with it a wealth of cosmological information. Unfortunately, that information, delicate intensity variations, turned out hard to extract from the overall temperature. Since the first detection, it took nearly 30 years before first evidence of fluctuations on the microwave background were presented. At present, high precision cosmology is solidly based on precise measurements of the CMB anisotropy making it possible to pinpoint cosmological parameters to one-in-a-hundred level precision. The progress has made it possible to build and test models of the Universe that differ in the way the cosmos evolved some fraction of the first second since the Big Bang. -- This thesis is concerned with the high precision CMB observations. It presents three selected topics along a CMB experiment analysis pipeline. Map-making and residual noise estimation are studied using an approach called destriping. The studied approximate methods are invaluable for the large datasets of any modern CMB experiment and will undoubtedly become even more so when the next generation of experiments reach the operational stage. -- We begin with a brief overview of cosmological observations and describe the general relativistic perturbation theory. Next we discuss the map-making problem of a CMB experiment and the characterization of residual noise present in the maps. In the end, the use of modern cosmological data is presented in the study of an extended cosmological model, the correlated isocurvature fluctuations. Current available data is shown to indicate that future experiments are certainly needed to provide more information on these extra degrees of freedom. Any solid evidence of the isocurvature modes would have a considerable impact due to their power in model selection.
Resumo:
Inflation is a period of accelerated expansion in the very early universe, which has the appealing aspect that it can create primordial perturbations via quantum fluctuations. These primordial perturbations have been observed in the cosmic microwave background, and these perturbations also function as the seeds of all large-scale structure in the universe. Curvaton models are simple modifications of the standard inflationary paradigm, where inflation is driven by the energy density of the inflaton, but another field, the curvaton, is responsible for producing the primordial perturbations. The curvaton decays after inflation as ended, where the isocurvature perturbations of the curvaton are converted into adiabatic perturbations. Since the curvaton must decay, it must have some interactions. Additionally realistic curvaton models typically have some self-interactions. In this work we consider self-interacting curvaton models, where the self-interaction is a monomial in the potential, suppressed by the Planck scale, and thus the self-interaction is very weak. Nevertheless, since the self-interaction makes the equations of motion non-linear, it can modify the behaviour of the model very drastically. The most intriguing aspect of this behaviour is that the final properties of the perturbations become highly dependent on the initial values. Departures of Gaussian distribution are important observables of the primordial perturbations. Due to the non-linearity of the self-interacting curvaton model and its sensitivity to initial conditions, it can produce significant non-Gaussianity of the primordial perturbations. In this work we investigate the non-Gaussianity produced by the self-interacting curvaton, and demonstrate that the non-Gaussianity parameters do not obey the analytically derived approximate relations often cited in the literature. Furthermore we also consider a self-interacting curvaton with a mass in the TeV-scale. Motivated by realistic particle physics models such as the Minimally Supersymmetric Standard Model, we demonstrate that a curvaton model within the mass range can be responsible for the observed perturbations if it can decay late enough.