18 resultados para human hepatocelluar carcinoma BEL-7402 cells

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New blood cells are continuously provided by self-renewing multipotent hematopoietic stem cells (HSC). The capacity of HSCs to regenerate the hematopoietic system is utilized in the treatment of patients with hematological malignancies. HSCs can be enriched using an antibody-based recognition of CD34 or CD133 glycoproteins on the cell surface. The CD133+ and CD34+ cells may have partly different roles in hematopoiesis. Furthermore, each cell has a glycome typical for that cell type. Knowledge of HSC glycobiology can be used to design therapeutic cells with improved cell proliferation or homing properties. The present studies characterize the global gene expression profile of human cord blood-derived CD133+ and CD34+ cells, and demonstrate the differences between CD133+ and CD34+ cell populations that may have an impact in transplantation when CD133+ and CD34+ selected cells are used. In addition, these studies unravel the glycome profile of primitive hematopoietic cells and reveal the transcriptional regulation of N-glycan biosynthesis in CD133+ and CD34+ cells. The gene expression profile of CD133+ cells represents 690 differentially expressed transcripts between CD133+ cells and CD133- cells. CD34+ cells have 620 transcripts differentially expressed when compared to CD34- cells. The integrated CD133+/CD34+ cell gene expression profiles proffer novel transcripts to specify HSCs. Furthermore, the differences between the gene expression profiles of CD133+ and CD34+ cells indicate differences in the transcriptional regulation of CD133+ and CD34+ cells. CD133+ cells express a lower number of hematopoietic lineage differentiation marker genes than CD34+ cells. The expression profiles suggest a more primitive nature of CD133+ cells. Moreover, CD133+ cells have characteristic glycome that differ from the glycome of CD133- cells. High mannose-type and biantennary complex-type N-glycans are enriched in CD133+ cells. N-glycosylation-related gene expression pattern of CD133+ cells identify the key genes regulating the CD133+ cell-specific glycosylation including the overexpression of MGAT2 and underexpression of MGAT4. The putative role of MAN1C1 in the increase of unprocessed high mannose-type N-glycans in CD133+ cells is also discussed. These studies provide new information on the characteristics of HSCs. Improved understanding of HSC biology can be used to design therapeutic cells with improved cell proliferation and homing properties. As a result, HSC engineering could further their clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Celiac disease is life-long autoimmune disorder of the small intestine, which is caused by a reaction to gliadin found in wheat, rye and barley in genetically predisposed individuals. Proline- and glutamine -rich proteins cause villous atrophy and crypt hyperplasia with extensive inflammation in the epithelium and lamina propria. Symptoms of celiac disease vary considerably and elimination of gluten from diet is the only way to treat disease. In small intestine of celiac disease patient transglutaminase 2 (TG2) modifies gluten peptides, which causes T-cell activation and inflammation in the epithelium of mucosa. T-cell activation induces development of celiac disease specific antibodies. These celiac disease specific antibodies recognise TG2 and interfere in vitro and in vivo in angiogenesis. Abnormal angiogenesis is typical in many disorders, such in cancer, in which TG2 has a crucial role in the development and growth of tumor. Overexpression of TG2 has been shown to correlate with accelerated growth of tumor. TG2-specific antibodies are suggested to inhibit differentation of epithelial cell, increase their proliferation, decrease their barrier-function and increase the permeability of blood vessels. The aims of the pilot study were to establish whether celiac disease TG2 antibodies affect in vivo tumorigenesis and tumorangiogenesis as well as to try to clarify the mechanism behind the phenomenon. Tumor xenograft model was used in severe combined immunodeficient (SCID) mice. Human oesophageal carcinoma (OE-19) cancer cells were incubated with celiacs TG2 miniautoantibody (mini 2.8), non-celiac miniautoantibody (mini 6.2) or PBS before cancer cells were injected to mice subcutaneously. During the experiment mice were weighted and tumor size was measured couple of times per week. To estimate the volumes of tumors the following formula was used: π/6 * L* W* H. Experiment lasted for four weeks after which the mice were euthanized, cardiac blood and tissue samples taken and tumours were excised and weighted. Sections were made from tumors and immunohistochemical stainings were done to compare blood vessel areas and to study general tumors´morphology and other parameters. Western blot -analyse were performed to cancer cells. The masses and volumes were clearly smaller in mini 2.8-group compared to control groups and the necrotic area of tumor in mini 2.8 was smallest as percentage compared to control groups. Blood vessel area were smallest in mini 2.8 group. Results suggest that celiac disease anti-TG2-autoantibodies inhibit tumor growth, but the number of animals is insufficient to give an accurate outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Basement membranes are specialized sheets of extracellular matrix found in contact with epithelia, endothelia, and certain isolated cells. They support tissue architecture and regulate cell behaviour. Laminins are among the main constituents of basement membranes. Due to differences between laminin isoforms, laminins confer structural and functional diversity to basement membranes. The first aim of this study was to gain insights into the potential functions of the then least characterized laminins, alpha4 chain laminins, by evaluating their distribution in human tissues. We thus created a monoclonal antibody specific for laminin alpha4 chain. By immunohistochemistry, alpha4 chain laminins were primarily localized to basement membranes of blood vessel endothelia, skeletal, heart, and smooth muscle cells, nerves, and adipocytes. In addition, alpha4 chain laminins were found in the region of certain epithelial basement membranes in the epidermis, salivary gland, pancreas, esophagus, stomach, intestine, and kidney. Because of the consistent presence of alpha4 chain laminins in endothelial basement membranes of blood vessels, we evaluated the potential roles of endothelial laminins in blood vessels, lymphatic vessels, and carcinomas. Human endothelial cells produced alpha4 and alpha5 chain laminins. In quantitative and morphological adhesion assays, human endothelial cells barely adhered to alpha4 chain-containing laminin-411. The weak interaction of endothelial cells with laminin-411 appeared to be mediated by alpha6beta1 integrin. The alpha5 chain-containing laminin-511 promoted endothelial cell adhesion better than laminin-411, but it did not promote the formation of cell-extracellular matrix adhesion complexes. The adhesion of endothelial cells to laminin-511 appeared to be mediated by Lutheran glycoprotein together with beta1 and alphavbeta3 integrins. The results suggest that these laminins may induce a migratory phenotype in endothelial cells. In lymphatic capillaries, endothelial basement membranes showed immunoreactivity for laminin alpha4, beta1, beta2, and gamma1 chains, type IV and XVIII collagens, and nidogen-1. Considering the assumed inability of alpha4 chain laminins to polymerize and to promote basement membrane assembly, the findings may in part explain the incomplete basement membrane formation in these vessels. Lymphatic capillaries of ovarian carcinomas showed immunoreactivity also for laminin alpha5 chain and its receptor Lutheran glycoprotein, emphasizing a difference between normal and ovarian carcinoma lymphatic capillaries. In renal cell carcinomas, immunoreactivity for laminin alpha4 chain was found in stroma and basement membranes of blood vessels. In most tumours, immunoreactivity for laminin alpha4 chain was also observed in the basement membrane region of tumour cell islets. Renal carcinoma cells produced alpha4 chain laminins. Laminin-411 did not promote adhesion of renal carcinoma cells, but inhibited their adhesion to fibronectin. Renal carcinoma cells migrated more on laminin-411 than on fibronectin. The results suggest that alpha4 chain laminins have a counteradhesive function, and may thus have a role in detachment and invasion of renal carcinoma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The incidence of non-melanoma skin cancer is increasing worldwide. Basal cell carcinoma followed by squamous cell carcinoma and malignant melanoma are the most frequent skin tumors. Immunosuppressed patients have an increased risk of neoplasia, of which non-melanoma skin cancer is the most common. Matrix metalloproteinases (MMPs) are proteolytic enzymes that collectively are capable of degrading virtually all components of the extracellular matrix. MMPs can also process substrates distinct from extracellular matrix proteins and influence cell proliferation, differentiation, angiogenesis, and apoptosis. MMP activity is regulated by their natural inhibitors, tissue inhibitors of metallopro-teinases (TIMPs). In this study, the expression patterns of MMPs, TIMPs, and certain cancer-related molecules were investigated in premalignant and malignant lesions of the human skin. As methods were used immunohistochemisty, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR) from the cell cultures. Our aim was to evaluate the expression pattern of MMPs in extramammary Paget's disease in order to find markers for more advanced tumors, as well as to shed light on the origin of this rare neoplasm. Novel MMPs -21, -26, and -28 were studied in melanoma cell culture, in primary cutaneous melanomas, and their sentinel nodes. The MMP expression profile in keratoacanthomas and well-differentiated squamous cell carcinomas was analyzed to find markers to differentiate benign keratinocyte hyperproliferation from malignantly transformed cells. Squamous cell carcinomas of immunosuppressed organ transplant recipients were compared to squamous cell carcinomas of matched immunocompetent controls to investigate the factors explaining their more aggressive nature. We found that MMP-7 and -19 proteins are abundant in extramammary Paget's disease and that their presence may predict an underlying adenocarcinoma in these patients. In melanomas, MMP-21 was upregulated in early phases of melanoma progression, but disappeared from the more aggressive tumors with lymph node metastases. The presence of MMP-13 in primary melanomas and lymph node metastases may relate to more aggressive disease. In keratoacanthomas, the expression of MMP-7 and -9 is rare and therefore should raise a suspicion of well-differentiated squamous cell carcinomas. Furthermore, MMP-19 and p16 were observed in benign keratinocyte hyperproliferation of keratoacanthomas, whereas they were generally lost from malignant keratinocytes of SCCs. MMP-26 staining was significantly stronger in squamous cell carcinomas and Bowen s disease samples of organ transplant recipients and it may contribute to the more aggressive nature of squamous cell carcinomas in immunosuppressed patients. In addition, the staining for MMP-9 was significantly stronger in macrophages surrounding the tumors of the immunocompetent group and in neutrophils of those patients on cyclosporin medication. In conclusion, based on our studies, MMP-7 and -19 might serve as biomarkers for more aggressive extramammary Paget's disease and MMP-21 for malignant transformation of melanocytes. MMP -7, -9, and -26, however, could play an important role in the pathobiology of keratinocyte derived malignancies.