67 resultados para host genetics
em Helda - Digital Repository of University of Helsinki
Resumo:
Puumala virus (PUUV) is the causative agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome. Finland has the highest documented incidence of NE with around 1000 cases diagnosed annually. PUUV is also found in other Scandinavian countries, Central Europe and the European part of Russia. PUUV belongs to the genus Hantavirus in the family Bunyaviridae. Hantaviruses are rodent-borne viruses each carried by a specific host that is persistently and asymptomatically infected by the virus. PUUV is carried by the bank voles (Myodes glareolus, previously known as Clethrionomys glareolus). Hantaviruses have co-evolved with their carrier rodents for millions of years and these host animals are the evolutionary scene of hantaviruses. In this study, PUUV sequences were recovered from bank voles captured in Denmark and Russian Karelia to study the evolution of PUUV in Scandinavia. Phylogenetic analysis of these strains showed a geographical clustering of genetic variants following the presumable migration pattern of bank voles during the recolonization of Scandinavia after the last ice age approximately 10 000 years ago. The currently known PUUV genome sequences were subjected to in-depth phylogenetic analyses and the results showed that genetic drift seems to be the major mechanism of PUUV evolution. In general, PUUV seems to evolve quite slowly following a molecular clock. We also found evidence for recombination in the evolution of some genetic lineages of PUUV. Viral microevolution was studied in controlled virus transmission in colonized bank voles and changes in quasispecies dynamics were recorded as the virus was transmitted from one animal to another. We witnessed PUUV evolution in vivo, as one synonymous mutation became repeatedly fixed in the viral genome during the experiment. The detailed knowledge on the PUUV diversity was used to establish new sensitive and specific detection methods for this virus. Direct viral invasion of the hypophysis was demonstrated for the first time in a lethal case of NE. PUUV detection was done by immunohistochemistry, in situ hybridization and RT-nested-PCR of the autopsy tissue samples.
Resumo:
Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.
Resumo:
The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.
Resumo:
Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.
Resumo:
The relationship between hosts and parasites is one of the most studied interactions between living organisms, and it is both universal and common in nature. Parasitoids are special type of parasites whose offspring develop attached to or within a single host organism that it ultimately consumes and kills. Hosts are arthropods and most parasitoids belong to the insect order Hymenoptera. For almost two decades metapopulation research on the Glanville fritillary butterfly (Melitaea cinxia) has been conducted in the Åland Islands, Finland. The studies have been concerned with the population dynamics, evolution, genetics, behavior, natural history and life history characteristics of M. cinxia, as well as with species interacting with the butterfly. The parasitoids of M. cinxia have been under long term studies and much has been learned about specific host-parasitoid interactions during the past decade. The research for this Master s thesis was done in the Åland Islands during summer 2010. I conducted a reciprocal transplant style experiment in order to compare the performance of host butterflies (M. cinxia) under attack by different parasitoid wasps (C. melitaearum). I used hosts and parasitoids from five origins around the Baltic Sea: Öland, Uppland, Åland, Saaremaa and Pikku-Tytärsaari. The host-parasitoid relationship was studied in terms of host susceptibility and parasitoid virulence, addressing specifically the possible effects of inbreeding and local adaptation of both parasitoids and their hosts. I compared various factors such as host defence ratio, parasitoid development rate, cocoon production rate etc. I also conducted a small scale C. melitaearum egg development experiment and C. melitaearum external morphology comparison between different parasitoid populations. The results show that host resistance and parasitoid virulence differ between both host and parasitoid populations. For example, Öland hosts were most susceptible to parasitoids and especially vulnerable to Pikku-Tytärsaari wasps. Pikku-Tytärsaari wasps were most successful in terms of parasitoids virulence and efficiency except in Saaremaa hosts, where the wasp did not succeed. Saaremaa hosts were resistant except towards Åland parasitoids. I did not find any simple pattern concerning host resistance and parasitoid virulence between inbred and outbred populations. Also, the effect of local adaptation was not detected, perhaps because metapopulation processes disturb local adaptation of the studied populations. Morphological comparisons showed differences between studied wasp populations and sexual dimorphism was obvious with females being bigger that males. There were also interesting differences among populations in male and female wing shapes. The results raise many further questions. Especially interesting were Pikku-Tytärsaari wasps that did well in terms of efficiency and virulence. Pikku-Tytärsaari is a small, isolated island in the Gulf of Finland and both the host and parasitoids are extremely inbred. For the host and parasitoid to persist in the island, the host has to have some mechanisms to escape the parasitoid. Further research will be done on the subject to discover the mechanisms of Pikku-Tytärsaari host s ability to escape parasitism. Also, genetic analyses will be conducted in the near future to determine the relatedness of used C. melitaearum populations.
Resumo:
Depression is a complex psychiatric disorder influenced by several genes, environmental factors, and their interplay. Serotonin receptor 2A (HTR2A) and tryptophan hydroxylase 1 (TPH1) genes have been implicated in vulnerability to depression and other psychiatric disorders, but the results have been inconsistent. The present study examined whether these two genes moderated the influence of different depressogenic environmental factors on subthreshold depressive symptoms (assessed on a modified version of Beck s Depression Inventory, BDI) and depression-related temperament, i.e., harm avoidance (assessed on the Temperament and Character Inventory, TCI). The environmental factors included measures of childhood and adolescence exposure, i.e., maternal nurturance and parental socioeconomic status, and adulthood social circumstances, i.e., perceived social support and urban/rural residence. The participants were two randomly selected subsamples (n = 1246, n = 341) from the longitudinal population-based Cardiovascular Risk in Young Finns study (n = 3596). Childhood environmental factors were assessed when the participants were 3 to 18 years of age, and three years after the baseline. Adulthood environmental factors and outcome measures were assessed 17 and 21 years later when the participants were 21 to 39 years of age. The T102C polymorphism of the HTR2A gene moderated the association between childhood maternal nurturance and adulthood depressive symptoms, such that exposure to high maternal nurturance predicted low depressive symptoms among individuals carrying the T/T or T/C genotypes, but not among those carrying the C/C genotype. Likewise, high parental SES predicted low adulthood harm avoidance in individuals carrying the T/T or T/C genotype, but not in C/C-genotype carriers. Individuals carrying the T/T or T/C genotype were also sensitive to urban/rural residence, such that they had lower depressive symptoms in urban than in rural areas, whereas those carrying the C/C genotype were not sensitive to urban/rural residence difference. HTR2A did not moderate the influence of social support. TheA779C/A218C haplotype of the TPH1 gene was not involved in the association between childhood environment and adulthood outcomes. However, individuals carrying A alleles of the TPH1 haplotype were more vulnerable to the lack of adulthood social support in terms of high depressive symptoms than their counterparts carrying no A alleles. Furthermore, individuals living in remote rural areas and carrying the A/A haplotype had higher depressive symptoms than those carrying other genotypes of the TPH1. The findings suggest that the HTR2A and TPH1 genes may be involved in the development of depression by influencing individual s sensitivity to depressogenic environmental influences.
Resumo:
Autoimmune diseases affect 5 % of the population and come in many forms, such as diabetes, rheumatoid arthritis and MS. However, how and why autoimmune diseases arise are not yet fully resolved. In this thesis, the onset of autoimmunity was investigated using both patient samples and a mouse model of autoimmunity. Autoimmune diseases are usually complex, due to a number of different causative genes and environmental factors. However, a few monogenic autoimmune diseases have been described, which are caused by mutations in only one gene per disease. One of such disease is called APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) and is enriched in the Finnish population. The causative gene behind APECED is named AIRE from AutoImmune REgulator. How malfunction of just one gene product can cause the multitude of disease components found in APECED is not yet resolved. This thesis sought out to find out more about the functions of AIRE, in order to reveal why APECED and other autoimmune diseases arise and what goes wrong? Usually, immune cells are taught to distinguish between self and non-self during their development. That way, immune cells can fight off bacteria and microbes while leaving the tissues and organs of the host organism itself unharmed. In APECED, the development of immune cells called αβ T cells is incomplete. The cells are not able to fully distinguish between self and non-self. This leads to autodestruction of self tissues and autoimmune disease. One of the achievements of this thesis was the finding that the development of another set of T cells called γδ T cells is not affected by AIRE in mice or in men. Instead, we found that another type of immune cell important in tolerance, called the dendritic cell is defective in APECED patients and is not able to respond to microbial stimulus in a normal fashion. Finally, we studied Aire-deficient mice and found that autoantibodies expressed in the mice were not targeted against the same molecules as those found in APECED patients. This indicates differences in the autoimmune pathology in mice and men. More work is still required before we understand the mechanisms of tolerance and autoimmunity well enough to be able to cure APECED, let alone the more complex autoimmune diseases. Yet altogether, the findings of this thesis work bring us one step closer to finding out why and how APECED and common autoimmune diseases arise.
Resumo:
The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric- speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno- Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno- Ugric-speakers strongly suggested that the lactase persistence T-13910 mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.
Resumo:
Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleotide polymorphism (SNP) haplotypes. Mutation analyses were performed by direct sequencing. We identified 5 distinct mutations in the lactase (LCT) gene, encoding the enzyme that hydrolyzes lactose in the intestinal lumen. These findings facilitate genetic testing of CLD in clinical practice and enable genetic counseling. The present data also provide the basis for detailed characterization of the molecular pathogenesis of this disorder. Adult-type hypolactasia (MIM 223100) (lactase non-persistence, lactose intolerance) is an autosomal recessive gastrointestinal condition that is a result of a decline in the activity of lactase in the intestinal lumen after weaning. Adult-type hypolactasia is considered to be a normal phenomenon among mammals and symptoms are remarkably milder than experienced in CLD. Recently, a variant C/T-13910 was shown to associate with the adult-type hypolactasia trait, locating 13.9 kb upstream of the LCT gene. In this study, the functional significance of the C/T-13910 variant was determined by studying the LCT mRNA levels in intestinal biopsy samples in children and adults with different genotypes. RT-PCR followed by solid-phase minisequencing was applied to determine the relative expression levels of the LCT alleles using an informative SNP located in exon 1. In children, the C-13910 allele was observed to be downregulated after five years of age in parallel with lactase enzyme activity. The expression of the LCT mRNA in the intestinal mucosa in individuals with the T-13910 A-22018 alleles was 11.5 times higher than that found in individuals with the C-13910, G-22018 alleles. These findings suggest that the C/T-13910 associated with adult-type hypolactasia is associated with the transcriptional regulation of the LCT gene. The presence of the T-13910 A-22018 allele also showed significant elevation lactase activity. Galactose, the hydrolysing product of the milk sugar lactose, has been hypothesized to be poisonous to ovarian epithelial cells. Hence, consumption of dairy products and lactase persistence has been proposed to be a risk factor for ovarian carcinoma. To investigate whether lactase persistence is related to the risk of ovarian carcinoma the C/T-13910 genotype was determined in a cohort of 782 women with ovarian carcinoma 1331 individuals serving as controls. Lactase persistence did not associate significantly with the risk for ovarian carcinoma in the Finnish, in the Polish or in the Swedish populations. The findings do not support the hypothesis that lactase persistence increases the risk for ovarian carcinoma.