2 resultados para graph distance

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed system is a collection of networked autonomous processing units which must work in a cooperative manner. Currently, large-scale distributed systems, such as various telecommunication and computer networks, are abundant and used in a multitude of tasks. The field of distributed computing studies what can be computed efficiently in such systems. Distributed systems are usually modelled as graphs where nodes represent the processors and edges denote communication links between processors. This thesis concentrates on the computational complexity of the distributed graph colouring problem. The objective of the graph colouring problem is to assign a colour to each node in such a way that no two nodes connected by an edge share the same colour. In particular, it is often desirable to use only a small number of colours. This task is a fundamental symmetry-breaking primitive in various distributed algorithms. A graph that has been coloured in this manner using at most k different colours is said to be k-coloured. This work examines the synchronous message-passing model of distributed computation: every node runs the same algorithm, and the system operates in discrete synchronous communication rounds. During each round, a node can communicate with its neighbours and perform local computation. In this model, the time complexity of a problem is the number of synchronous communication rounds required to solve the problem. It is known that 3-colouring any k-coloured directed cycle requires at least ½(log* k - 3) communication rounds and is possible in ½(log* k + 7) communication rounds for all k ≥ 3. This work shows that for any k ≥ 3, colouring a k-coloured directed cycle with at most three colours is possible in ½(log* k + 3) rounds. In contrast, it is also shown that for some values of k, colouring a directed cycle with at most three colours requires at least ½(log* k + 1) communication rounds. Furthermore, in the case of directed rooted trees, reducing a k-colouring into a 3-colouring requires at least log* k + 1 rounds for some k and possible in log* k + 3 rounds for all k ≥ 3. The new positive and negative results are derived using computational methods, as the existence of distributed colouring algorithms corresponds to the colourability of so-called neighbourhood graphs. The colourability of these graphs is analysed using Boolean satisfiability (SAT) solvers. Finally, this thesis shows that similar methods are applicable in capturing the existence of distributed algorithms for other graph problems, such as the maximal matching problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.