6 resultados para flag leaf
em Helda - Digital Repository of University of Helsinki
Resumo:
A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.
Resumo:
Herbivorous insects comprise a major part of terrestrial biodiversity, and their interactions with their host plants and natural enemies are of vast ecological importance. A large body of research demonstrates that the ecology and evolution of these insects may be affected by trophic interactions, by abiotic influences, and by intraspecific processes, but so far research on these individual aspects has rarely been combined. This thesis uses the leaf-mining moth Tischeria ekebladella and the pedunculate oak (Quercus robur) as a case study to assess how spatial variation in trophic interactions and the physical distribution of host trees jointly affect the distribution, dynamics and evolution of a host-specific herbivore. With respect to habitat quality, Tischeria ekebladella experiences abundant variation at several spatial scales. Most of this variation occurs at small scales notably among leaves and shoots within individual trees. While hypothetically this could cause moths to evolve an ability to select leaves and shoots of high quality, I did not find any coupling between female preference and offspring performance. Based on my studies on temporal variation in resource quality I therefore propose that unpredictable temporal changes in the relative rankings of individual resource units may render it difficult for females to predict the fate of their developing offspring. With respect to intraspecific processes, my results suggest that limited moth dispersal in relation to the spatial distribution of oak trees plays a key role in determining the regional distribution of Tischeria ekebladella. The distribution of the moth is aggregated at the landscape level, where local leaf miner populations are less likely to be present where oaks are scarce. A modelling exercise based on empirical dispersal estimates revealed that the moth population on Wattkast an island in south-western Finland is spatially structured overall, but that the relative importance of local and regional processes on tree-specific moth dynamics varies drastically across the landscape. To conclude, my work in the oak-Tischeria ekebladella system demonstrates that the local abundance and regional distribution of a herbivore may be more strongly influenced by the spatial location of host trees than by their relative quality. Hence, it reveals the importance of considering spatial context in the study of herbivorous insects, and forms a bridge between the classical fields of plant-insect interactions and spatial ecology.
Resumo:
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.