20 resultados para dust aerosol

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is road dust . The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: i) How do traction sanding and physical properties of the traction sand aggregate affect formation of road dust? ii) How do studded tires affect the formation of road dust when compared with friction tires? iii) What are the composition and sources of airborne road dust in a road simulator and during a springtime road dust episode in Finland? iv) What is the size distribution of abrasion particles from tire-road interaction? The studies were conducted both in a road simulator and in field conditions. The test results from the road simulator showed that traction sanding increased road dust emissions, and that the effect became more dominant with increasing sand load. A high percentage of fine-grained anti-skid aggregate of overall grading increased the PM10 concentrations. Anti-skid aggregate with poor resistance to fragmentation resulted in higher PM levels compared with the other aggregates, and the effect became more significant with higher aggregate loads. Glaciofluvial aggregates tended to cause higher particle concentrations than crushed rocks with good fragmentation resistance. Comparison of tire types showed that studded tires result in higher formation of PM emissions compared with friction tires. The same trend between the tires was present in the tests with and without anti-skid aggregate. This finding applies to test conditions of the road simulator with negligible resuspension. Source and composition analysis showed that the particles in the road simulator were mainly minerals and originated from both traction sand and pavement aggregates. A clear contribution of particles from anti-skid aggregate to ambient PM and dust deposition was also observed in urban conditions. The road simulator results showed that the interaction between tires, anti-skid aggregate and road surface is important in dust production and the relative contributions of these sources depend on their properties. Traction sand grains are fragmented into smaller particles under the tires, but they also wear the pavement aggregate. Therefore particles from both aggregates are observed. The mass size distribution of traction sand and pavement wear particles was mainly coarse, but fine and submicron particles were also present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles can cause detrimental environmental and health effects. The particles and their precursor gases are emitted from various anthropogenic and natural sources. It is important to know the origin and properties of aerosols to efficiently reduce their harmful effects. The diameter of aerosol particles (Dp) varies between ~0.001 and ~100 μm. Fine particles (PM2.5: Dp < 2.5 μm) are especially interesting because they are the most harmful and can be transported over long distances. The aim of this thesis is to study the impact on air quality by pollution episodes of long-range transported aerosols affecting the composition of the boundary-layer atmosphere in remote and relatively unpolluted regions of the world. The sources and physicochemical properties of aerosols were investigated in detail, based on various measurements (1) in southern Finland during selected long-range transport (LRT) pollution episodes and unpolluted periods and (2) over the Atlantic Ocean between Europe and Antarctica during a voyage. Furthermore, the frequency of LRT pollution episodes of fine particles in southern Finland was investigated over a period of 8 years, using long-term air quality monitoring data. In southern Finland, the annual mean PM2.5 mass concentrations were low but LRT caused high peaks of daily mean concentrations every year. At an urban background site in Helsinki, the updated WHO guideline value (24-h PM2.5 mean 25 μg/m3) was exceeded during 1-7 LRT episodes each year during 1999-2006. The daily mean concentrations varied between 25 and 49 μg/m3 during the episodes, which was 3-6 times higher than the mean concentration in the long term. The in-depth studies of selected LRT episodes in southern Finland revealed that biomass burning in agricultural fields and wildfires, occurring mainly in Eastern Europe, deteriorated air quality on a continental scale. The strongest LRT episodes of fine particles resulted from open biomass-burning fires but the emissions from other anthropogenic sources in Eastern Europe also caused significant LRT episodes. Particle mass and number concentrations increased strongly in the accumulation mode (Dp ~ 0.09-1 μm) during the LRT episodes. However, the concentrations of smaller particles (Dp < 0.09 μm) remained low or even decreased due to the uptake of vapours and molecular clusters by LRT particles. The chemical analysis of individual particles showed that the proportions of several anthropogenic particle types increased (e.g. tar balls, metal oxides/hydroxides, spherical silicate fly ash particles and various calcium-rich particles) in southern Finland during an LRT episode, when aerosols originated from the polluted regions of Eastern Europe and some open biomass-burning smoke was also brought in by LRT. During unpolluted periods when air masses arrived from the north, the proportions of marine aerosols increased. In unpolluted rural regions of southern Finland, both accumulation mode particles and small-sized (Dp ~ 1-3 μm) coarse mode particles originated mostly from LRT. However, the composition of particles was totally different in these size fractions. In both size fractions, strong internal mixing of chemical components was typical for LRT particles. Thus, the aging of particles has significant impacts on their chemical, hygroscopic and optical properties, which can largely alter the environmental and health effects of LRT aerosols. Over the Atlantic Ocean, the individual particle composition of small-sized (Dp ~ 1-3 μm) coarse mode particles was affected by continental aerosol plumes to distances of at least 100-1000 km from the coast (e.g. pollutants from industrialized Europe, desert dust from the Sahara and biomass-burning aerosols near the Gulf of Guinea). The rate of chloride depletion from sea-salt particles was high near the coasts of Europe and Africa when air masses arrived from polluted continental regions. Thus, the LRT of continental aerosols had significant impacts on the composition of the marine boundary-layer atmosphere and seawater. In conclusion, integration of the results obtained using different measurement techniques captured the large spatial and temporal variability of aerosols as observed at terrestrial and marine sites, and assisted in establishing the causal link between land-bound emissions, LRT and air quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to predict the current state and future development of Earth s climate, detailed information on atmospheric aerosols and aerosol-cloud-interactions is required. Furthermore, these interactions need to be expressed in such a way that they can be represented in large-scale climate models. The largest uncertainties in the estimate of radiative forcing on the present day climate are related to the direct and indirect effects of aerosol. In this work aerosol properties were studied at Pallas and Utö in Finland, and at Mount Waliguan in Western China. Approximately two years of data from each site were analyzed. In addition to this, data from two intensive measurement campaigns at Pallas were used. The measurements at Mount Waliguan were the first long term aerosol particle number concentration and size distribution measurements conducted in this region. They revealed that the number concentration of aerosol particles at Mount Waliguan were much higher than those measured at similar altitudes in other parts of the world. The particles were concentrated in the Aitken size range indicating that they were produced within a couple of days prior to reaching the site, rather than being transported over thousands of kilometers. Aerosol partitioning between cloud droplets and cloud interstitial particles was studied at Pallas during the two measurement campaigns, First Pallas Cloud Experiment (First PaCE) and Second Pallas Cloud Experiment (Second PaCE). The method of using two differential mobility particle sizers (DMPS) to calculate the number concentration of activated particles was found to agree well with direct measurements of cloud droplet. Several parameters important in cloud droplet activation were found to depend strongly on the air mass history. The effects of these parameters partially cancelled out each other. Aerosol number-to-volume concentration ratio was studied at all three sites using data sets with long time-series. The ratio was found to vary more than in earlier studies, but less than either aerosol particle number concentration or volume concentration alone. Both air mass dependency and seasonal pattern were found at Pallas and Utö, but only seasonal pattern at Mount Waliguan. The number-to-volume concentration ratio was found to follow the seasonal temperature pattern well at all three sites. A new parameterization for partitioning between cloud droplets and cloud interstitial particles was developed. The parameterization uses aerosol particle number-to-volume concentration ratio and aerosol particle volume concentration as the only information on the aerosol number and size distribution. The new parameterization is computationally more efficient than the more detailed parameterizations currently in use, but the accuracy of the new parameterization was slightly lower. The new parameterization was also compared to directly observed cloud droplet number concentration data, and a good agreement was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interstellar clouds are not featureless, but show quite complex internal structures of filaments and clumps when observed with high enough resolution. These structures have been generated by 1) turbulent motions driven mainly by supernovae, 2) magnetic fields working on the ions and, through neutral-ion collisions, on neutral gas as well, and 3) self-gravity pulling a dense clump together to form a new star. The study of the cloud structure gives us information on the relative importance of each of these mechanisms, and helps us to gain a better understanding of the details of the star formation process. Interstellar dust is often used as a tracer for the interstellar gas which forms the bulk of the interstellar matter. Some of the methods that are used to derive the column density are summarized in this thesis. A new method, which uses the scattered light to map the column density in large fields with high spatial resolution, is introduced. This thesis also takes a look at the grain alignment with respect to the magnetic fields. The aligned grains give rise to the polarization of starlight and dust emission, thus revealing the magnetic field. The alignment mechanisms have been debated for the last half century. The strongest candidate at present is the radiative torques mechanism. In the first four papers included in this thesis, the scattered light method of column density estimation is formulated, tested in simulations, and finally used to obtain a column density map from observations. They demonstrate that the scattered light method is a very useful and reliable tool in column density estimation, and is able to provide higher resolution than the near-infrared color excess method. These two methods are complementary. The derived column density maps are also used to gain information on the dust emissivity within the observed cloud. The two final papers present simulations of polarized thermal dust emission assuming that the alignment happens by the radiative torques mechanism. We show that the radiative torques can explain the observed decline of the polarization degree towards dense cores. Furthermore, the results indicate that the dense cores themselves might not contribute significantly to the polarized signal, and hence one needs to be careful when interpreting the observations and deriving the magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions of coal combustion fly ash through real scale ElectroStatic Precipitators (ESP) were studied in different coal combustion and operation conditions. Sub-micron fly-ash aerosol emission from a power plant boiler and the ESP were determined and consequently the aerosol penetration, as based on electrical mobility measurements, thus giving thereby an indication for an estimate on the size and the maximum extent that the small particles can escape. The experimentals indicate a maximum penetration of 4% to 20 % of the small particles, as counted on number basis instead of the normally used mass basis, while simultaneously the ESP is operating at a nearly 100% collection efficiency on mass basis. Although the size range as such seems to appear independent of the coal, of the boiler or even of the device used for the emission control, the maximum penetration level on the number basis depends on the ESP operating parameters. The measured emissions were stable during stable boiler operation for a fired coal, and the emissions seemed each to be different indicating that the sub-micron size distribution of the fly-ash could be used as a specific characteristics for recognition, for instance for authenticity, provided with an indication of known stable operation. Consequently, the results on the emissions suggest an optimum particle size range for environmental monitoring in respect to the probability of finding traces from the samples. The current work embodies also an authentication system for aerosol samples for post-inspection from any macroscopic sample piece. The system can comprise newly introduced new devices, for mutually independent use, or, for use in a combination with each other, as arranged in order to promote the sampling operation length and/or the tag selection diversity. The tag for the samples can be based on naturally occurring measures and/or added measures of authenticity in a suitable combination. The method involves not only military related applications but those in civil industries as well. Alternatively to the samples, the system can be applied to ink for note printing or other monetary valued papers, but also in a filter manufacturing for marking fibrous filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudiness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation is the first step in the formation of a new phase inside a mother phase. Two main forms of nucleation can be distinguished. In homogeneous nucleation, the new phase is formed in a uniform substance. In heterogeneous nucleation, on the other hand, the new phase emerges on a pre-existing surface (nucleation site). Nucleation is the source of about 30% of all atmospheric aerosol which in turn has noticeable health effects and a significant impact on climate. Nucleation can be observed in the atmosphere, studied experimentally in the laboratory and is the subject of ongoing theoretical research. This thesis attempts to be a link between experiment and theory. By comparing simulation results to experimental data, the aim is to (i) better understand the experiments and (ii) determine where the theory needs improvement. Computational fluid dynamics (CFD) tools were used to simulate homogeneous onecomponent nucleation of n-alcohols in argon and helium as carrier gases, homogeneous nucleation in the water-sulfuric acid-system, and heterogeneous nucleation of water vapor on silver particles. In the nucleation of n-alcohols, vapor depletion, carrier gas effect and carrier gas pressure effect were evaluated, with a special focus on the pressure effect whose dependence on vapor and carrier gas properties could be specified. The investigation of nucleation in the water-sulfuric acid-system included a thorough analysis of the experimental setup, determining flow conditions, vapor losses, and nucleation zone. Experimental nucleation rates were compared to various theoretical approaches. We found that none of the considered theoretical descriptions of nucleation captured the role of water in the process at all relative humidities. Heterogeneous nucleation was studied in the activation of silver particles in a TSI 3785 particle counter which uses water as its working fluid. The role of the contact angle was investigated and the influence of incoming particle concentrations and homogeneous nucleation on counting efficiency determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New stars in galaxies form in dense, molecular clouds of the interstellar medium. Measuring how the mass is distributed in these clouds is of crucial importance for the current theories of star formation. This is because several open issues in them, such as the strength of different mechanism regulating star formation and the origin of stellar masses, can be addressed using detailed information on the cloud structure. Unfortunately, quantifying the mass distribution in molecular clouds accurately over a wide spatial and dynamical range is a fundamental problem in the modern astrophysics. This thesis presents studies examining the structure of dense molecular clouds and the distribution of mass in them, with the emphasis on nearby clouds that are sites of low-mass star formation. In particular, this thesis concentrates on investigating the mass distributions using the near infrared dust extinction mapping technique. In this technique, the gas column densities towards molecular clouds are determined by examining radiation from the stars that shine through the clouds. In addition, the thesis examines the feasibility of using a similar technique to derive the masses of molecular clouds in nearby external galaxies. The papers presented in this thesis demonstrate how the near infrared dust extinction mapping technique can be used to extract detailed information on the mass distribution in nearby molecular clouds. Furthermore, such information is used to examine characteristics crucial for the star formation in the clouds. Regarding the use of extinction mapping technique in nearby galaxies, the papers of this thesis show that deriving the masses of molecular clouds using the technique suffers from strong biases. However, it is shown that some structural properties can still be examined with the technique.