8 resultados para death of child
em Helda - Digital Repository of University of Helsinki
Resumo:
Human parvovirus B19 (B19V) is known to cause anemia, hydrops fetalis, and fetal death especially during the first half of pregnancy. Women who are in occupational contact with young children are at increased risk of B19V infection. The role of the recently discovered human parvovirus, human bocavirus (HBoV), in reproduction is unknown. The aim of this research project was to establish a scientific basis for assessing the work safety of pregnant women and for issuing special maternity leave regulations during B19V epidemics in Finland. The impact of HBoV infection on the pregnant woman and her fetus was also defined. B19V DNA was found in 0.8% of the miscarriages and in 2.4% of the intrauterine fetal death (IUFD; fetal death after completed 22 gestational weeks). All control fetuses (from induced abortions) were B19V-DNA negative. The findings on hydropic B19V DNA-positive IUFDs with evidence of acute or recent maternal B19V infection are in line with those of previous Swedish studies. However, the high prevalence of B19V-related nonhydropic IUFDs noted in the Swedish studies was mostly without evidence of maternal B19V infection and was not found during the third trimester. HBoV was not associated with miscarriages or IUFDs. Almost all of the studied pregnant women were HboV-IgG positive, and thus most probably immune to HBoV. All preterm births, perinatal deaths, smallness for gestational age (SGA) and congenital anomaly were recorded among the infants of child-care employees in a nationwide register-based cohort study over a period of 14 years. Little or no differences in the results were found between the infants of the child-care employees and those of the comparison group. The annual B19V seroconversion rate was over two-fold among the child-care employees, compared to the women in the comparison group. The seropositivity of the child-care employees increased with age, and years from qualification/joining the trade union. In general, the child-care employees are not at increased risk for adverse pregnancy outcome. However, at the population level, the risk of rare events, such as adverse pregnancy outcomes attributed to infections, could not be determined. According to previous studies, seronegative women had a 5 10% excess risk of losing the fetus during the first half of their pregnancy, but thereafter the risk was very low. Therefore, an over two-fold increased risk of B19V infection among child-care employees is considerable, and should be taken into account in the assessment of the occupational safety of pregnant women, especially during the first half of their pregnancy.
Resumo:
Studying the continuity and underlying mechanisms of temperament change from early childhood through adulthood is clinically and theoretically relevant. Knowledge of the continuity and change of temperament from infancy onwards, especially as perceived by both parents is, however, still scanty. Only in recent years have researchers become aware that personality, long considered as stable in adulthood, may also change. Further, studies that focus on the transactional change of child temperament and parental personality also seem to be lacking, as are studies focusing on transactions between child temperament and more transient parental characteristics, like parental stress. Therefore, this longitudinal study examined the degree of continuity of temperament over five years from the infant s age of six months to the child s age of five and a half years, as perceived by both biological parents, and also investigated the bidirectional effects between child temperament and parents personality traits and overall stress experienced during that time. First, moderate to high levels of continuity of temperament from infancy to middle childhood were shown, depicting the developmental links between affectively positive and well-adjusted temperament characteristics, and between characteristics of early and later negative affectivity. The continuity of temperament was quantitatively and qualitatively similar in both parents ratings. The findings also demonstrate that infant and childhood temperament characteristics cluster to form stable temperament types that resemble personality types shown in child and adult personality studies. Second, the parental personality traits of extraversion and neuroticism were shown to be highly stable over five years, but evidence of change in relation to parents views of their child s temperament was also shown: an infant s higher positive affectivity predicted an increase in parental extraversion, while the infant s higher activity level predicted a decrease in parental neuroticism over five years. Furthermore, initially higher parental extraversion predicted higher ratings of the child s effortful control, while initially higher parental neuroticism predicted the child s higher negative affectivity. In terms of changes in parental stress, the infant s higher activity level predicted a decrease in maternal overall stress, while initially higher maternal stress predicted a higher level of child negative affectivity in middle childhood. Together, the results demonstrate that the mother- and father-rated temperament of the child shows continuity during the early years of life, but also support the view that the development of these characteristics is sensitive to important contextual factors such as parental personality and overall stress. While parental personality and experienced stress were shown to have an effect on the child s developing temperament, the reverse was also true: the parents own personality traits and perceived stress seemed to be highly stable, but also susceptible to their experiences of their child s temperament.
Resumo:
Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly. Its etiology is unknown and no disease-modifying drugs are available. Thus, more information concerning its pathogenesis is needed. Among other genes, mutated PTEN-induced kinase 1 (PINK1) has been linked to early-onset and sporadic PD, but its mode of action is poorly understood. Most animal models of PD are based on the use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is metabolized to MPP+ by monoamine oxidase B (MAO B) and causes cell death of dopaminergic neurons in the substantia nigra in mammals. Zebrafish has been a widely used model organism in developmental biology, but is now emerging as a model for human diseases due to its ideal combination of properties. Zebrafish are inexpensive and easy to maintain, develop rapidly, breed in large quantities producing transparent embryos, and are readily manipulated by various methods, particularly genetic ones. In addition, zebrafish are vertebrate animals and results derived from zebrafish may be more applicable to mammals than results from invertebrate genetic models such as Drosophila melanogaster and Caenorhabditis elegans. However, the similarity cannot be taken for granted. The aim of this study was to establish and test a PD model using larval zebrafish. The developing monoaminergic neuronal systems of larval zebrafish were investigated. We identified and classified 17 catecholaminergic and 9 serotonergic neuron populations in the zebrafish brain. A 3-dimensional atlas was created to facilitate future research. Only one gene encoding MAO was found in the zebrafish genome. Zebrafish MAO showed MAO A-type substrate specificity, but non-A-non-B inhibitor specificity. Distribution of MAO in larval and adult zebrafish brains was both diffuse and distinctly cellular. Inhibition of MAO during larval development led to markedly elevated 5-hydroxytryptamine (serotonin, 5-HT) levels, which decreased the locomotion of the fish. MPTP exposure caused a transient loss of cells in specific aminergic cell populations and decreased locomotion. MPTP-induced changes could be rescued by the MAO B inhibitor deprenyl, suggesting a role for MAO in MPTP toxicity. MPP+ affected only one catecholaminergic cell population; thus, the action of MPP+ was more selective than that of MPTP. The zebrafish PINK1 gene was cloned in zebrafish, and morpholino oligonucleotides were used to suppress its expression in larval zebrafish. The functional domains and expression pattern of zebrafish PINK1 resembled those of other vertebrates, suggesting that zebrafish is a feasible model for studying PINK1. Translation inhibition resulted in cell loss of the same catecholaminergic cell populations as MPTP and MPP+. Inactivation of PINK1 sensitized larval zebrafish to subefficacious doses of MPTP, causing a decrease in locomotion and cell loss in one dopaminergic cell population. Zebrafish appears to be a feasible model for studying PD, since its aminergic systems, mode of action of MPTP, and functions of PINK1 resemble those of mammalians. However, the functions of zebrafish MAO differ from the two forms of MAO found in mammals. Future studies using zebrafish PD models should utilize the advantages specific to zebrafish, such as the ability to execute large-scale genetic or drug screens.
Resumo:
The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies. This thesis investigates variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD. This candidate gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene is a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function. First, we examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts. Our data suggested that USF1 contributes to these CVD risk factors at the population level. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual. Second, we investigated how variation at the USF1 locus contributes to atherosclerotic lesions of the coronary arteries and abdominal aorta. For this, we used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. USF1 variation significantly associated with areas of several types of lesions, especially with calcification of the arteries. Next, we tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD. The atherosclerosis-associated risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in the Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies. Finally, as some of the low-yield DNA samples of the Finnish follow-up study cohort needed to be whole-genome amplified (WGA) prior to genotyping, we evaluated whether the produced WGA genotypes were of good quality. Although the samples giving genotype discrepancies could not be detected before genotyping with standard laboratory quality control methods, our results suggested that enhanced quality control at the time of the genotyping could identify such samples. In addition, combining two WGA reactions into one pooled DNA sample for genotyping markedly reduced the number of discrepancies and samples showing them. In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. This USF1 study, and other studies with low DNA yield of some samples, can benefit from whole genome amplification of the low-yield samples prior to genotyping. Careful quality control procedures are, however, needed in WGA genotyping.