9 resultados para climate dynamics
em Helda - Digital Repository of University of Helsinki
Resumo:
Northern peatlands are thought to store one third of all soil carbon (C). Besides the C sink function, peatlands are one of the largest natural sources of methane (CH4) to the atmosphere. Climate change may affect the C gas dynamics as well as the labile C pool. Because the peatland C sequestration and CH4 emissions are governed by high water levels, changes in hydrology are seen as the driving factor in peatland ecosystem change. This study aimed to quantify the carbon dioxide (CO2) and CH4 dynamics of a fen ecosystem at different spatial scales: plant community components scale, plant community scale and ecosystem scale, under hydrologically normal and water level drawdown conditions. C gas exchange was measured in two fens in southern Finland applying static chamber and eddy covariance techniques. During hydrologically normal conditions, the ecosystem was a CO2 sink and CH4 source to the atmosphere. Sphagnum mosses and sedges were the most important contributors to the community photosynthesis. The presence of sedges had a major positive impact on CH4 emissions while dwarf shrubs had a slightly attenuating impact. C fluxes varied considerably between the plant communities. Therefore, their proportions determined the ecosystem scale fluxes. An experimental water level drawdown markedly reduced the photosynthesis and respiration of sedges and Sphagnum mosses and benefited shrubs. Consequently, changes were smaller at the ecosystem scale than at the plant group scale. The decrease in photosynthesis and the increase in respiration, mostly peat respiration, made the fen a smaller CO2 sink. CH4 fluxes were significantly lowered, close to zero. The impact of natural droughts was similar to, although more modest than, the impact of the experimental water level drawdown. The results are applicable to the short term impacts of the water level drawdown and to climatic conditions in which droughts become more frequent.
Resumo:
The objectives of this study were to investigate the stand structure and succession dynamics in Scots pine (Pinus sylvestris L.) stands on pristine peatlands and in Scots pine and Norway spruce (Picea abies (L.) Karst.) dominated stands on drained peatlands. Furthermore, my focus was on characterising how the inherent and environmental factors and the intermediate thinnings modify the stand structure and succession. For pristine peatlands, the study was based on inventorial stand data, while for drained peatlands, longitudinal data from repeatedly measured stands were utilised. The studied sites covered the most common peatland site types in Finland. They were classified into two categories according to the ecohydrological properties related to microsite variation and nutrient levels within sites. Tree DBH and age distributions in relation to climate and site type were used to study the stand dynamics on pristine sites. On drained sites, the Weibull function was used to parameterise the DBH distributions and mixed linear models were constructed to characterise the impacts of different ecological factors on stand dynamics. On pristine peatlands, both climate and the ecohydrology of the site proved to be crucial factors determining the stand structure and its dynamics. Irrespective of the vegetation succession, enhanced site productivity and increased stand stocking they significantly affected the stand dynamics also on drained sites. On the most stocked sites on pristine peatlands the inter-tree competition seemed to also be a significant factor modifying stand dynamics. Tree age and size diversity increased with stand age, but levelled out in the long term. After drainage, the stand structural unevenness increased due to the regeneration and/or ingrowth of the trees. This increase was more pronounced on sparsely forested composite sites than on more fully stocked genuine forested sites in Scots pine stands, which further undergo the formation of birch and spruce undergrowth beneath the overstory as succession proceeds. At 20-30 years after drainage the structural heterogeneity started to decrease, indicating increased inter-tree competition, which increased the mortality of suppressed trees within stand. Peatland stands are more dynamic than anticipated and are generally not characterized by a balanced, self-perpetuating structure. On pristine sites, various successional pathways are possible, whereas on drained sites the succession has more uniform trend. Typically, stand succession proceeds without any distinct developmental stages on pristine peatlands, whereas on drained peatlands, at least three distinct stages could be identified. Thinnings had only little impact on the stand succession. The new information on stand dynamics may be utilised, e.g. in forest management planning to facilitate the allocation of the growth resources to the desired crop component by appropriate silvicultural treatments, as well as assist in assessing the effects of the climate change on the forested boreal peatlands.
Resumo:
Nisäkkäiden levinneisyyteen, niiden morfologisiin ja ekologisiin piirteisiin vaikuttavat ympäristön sekä lyhyet että pitkäkestoiset muutokset, etenkin ilmaston ja kasvillisuuden vaihtelut. Työssä tutkittiin nisäkkäiden sopeutumista ilmastonmuutoksiin Euraasiassa viimeisen 24 miljoonan vuoden aikana. Tutkimuksessa keskityttiin varsinkin viimeiseen kahteen miljoonaan vuoteen, jonka aikana ilmasto muuttui voimakkaasti ja ihmisen toiminta alkoi tulla merkittäväksi. Tämän takia on usein vaikea erottaa, kummasta em. seikasta jonkin nisäkäslajin sukupuutto tai häviäminen alueelta johtui. Aineistona käytettiin laajaa venäjänkielistä kirjallisuutta, josta löytyvät tiedot ovat kääntämättöminä jääneet aiemmin länsimaisen tutkimuksen ulkopuolelle. Työssä käytettiin myös NOW-tietokantaa, jossa on fossiilisten nisäkkäiden löytöpaikat sekä niiden iät.
Resumo:
Elucidating the mechanisms responsible for the patterns of species abundance, diversity, and distribution within and across ecological systems is a fundamental research focus in ecology. Species abundance patterns are shaped in a convoluted way by interplays between inter-/intra-specific interactions, environmental forcing, demographic stochasticity, and dispersal. Comprehensive models and suitable inferential and computational tools for teasing out these different factors are quite limited, even though such tools are critically needed to guide the implementation of management and conservation strategies, the efficacy of which rests on a realistic evaluation of the underlying mechanisms. This is even more so in the prevailing context of concerns over climate change progress and its potential impacts on ecosystems. This thesis utilized the flexible hierarchical Bayesian modelling framework in combination with the computer intensive methods known as Markov chain Monte Carlo, to develop methodologies for identifying and evaluating the factors that control the structure and dynamics of ecological communities. These methodologies were used to analyze data from a range of taxa: macro-moths (Lepidoptera), fish, crustaceans, birds, and rodents. Environmental stochasticity emerged as the most important driver of community dynamics, followed by density dependent regulation; the influence of inter-specific interactions on community-level variances was broadly minor. This thesis contributes to the understanding of the mechanisms underlying the structure and dynamics of ecological communities, by showing directly that environmental fluctuations rather than inter-specific competition dominate the dynamics of several systems. This finding emphasizes the need to better understand how species are affected by the environment and acknowledge species differences in their responses to environmental heterogeneity, if we are to effectively model and predict their dynamics (e.g. for management and conservation purposes). The thesis also proposes a model-based approach to integrating the niche and neutral perspectives on community structure and dynamics, making it possible for the relative importance of each category of factors to be evaluated in light of field data.
Resumo:
In the 21st century, human-induced global climate change has been highlighted as one of the most serious threats to ecosystems worldwide. According to global climate scenarios, the mean temperature in Finland is expected to increase by 1.8 4.0°C by the end of the century. The regional and seasonal change in temperature has predicted to be spatially and temporally asymmetric, where the High-Arctic and Antarctic areas and winter and spring seasons have been projected to face the highest temperature increase. To understand how species respond to the ongoing climate change, we need to study how climate affects species in different phases of their life cycle. The impact of climate on breeding and migration of eight large-sized bird species was studied in this thesis, taking food availability into account. The findings show that climatic variables have considerable impact on the life-history traits of large-sized birds in northern Europe. The magnitude of climatic effects on migration and breeding was comparable with that of food supply, conventionally regarded as the main factor affecting these life-history traits. Based on the results of this thesis and the current climate scenarios, the following not mutually exclusive responses are possible in the near future. Firstly, asymmetric climate change may result in a mistiming of breeding because mild winters and early spring may lead to earlier breeding, whereas offspring are hatching into colder conditions which elevate mortality. Secondly, climate induced responses can differ between species with different breeding tactics (income vs. capital breeding), so that especially capital breeders can gain advantage on global warming as they can sustain higher energy resources. Thirdly, increasing precipitation has the potential to reduce the breeding success of many species by exposing nestlings to more severe post-hatching conditions and hampering the hunting conditions of parents. Fourthly, decreasing ice cover and earlier ice-break in the Baltic Sea will allow earlier spring migration in waterfowl. In eiders, this can potentially lead to more productive breeding. Fifthly, warming temperatures can favour parents preparing for breeding and increase nestling survival. Lastly, the climate-induced phenological changes in life history events will likely continue. Furthermore, interactions between climate and food resources can be complex and interact with each other. Eiders provide an illustrative example of this complexity, being caught in the crossfire between more benign ice conditions and lower salinity negatively affecting their prime food resource. The general conclusion is that climate is controlling not only the phenology of the species but also their reproductive output, thus affecting the entire population dynamics.
Resumo:
While environmental variation is an ubiquitous phenomenon in the natural world which has for long been appreciated by the scientific community recent changes in global climatic conditions have begun to raise consciousness about the economical, political and sociological ramifications of global climate change. Climate warming has already resulted in documented changes in ecosystem functioning, with direct repercussions on ecosystem services. While predicting the influence of ecosystem changes on vital ecosystem services can be extremely difficult, knowledge of the organisation of ecological interactions within natural communities can help us better understand climate driven changes in ecosystems. The role of environmental variation as an agent mediating population extinctions is likely to become increasingly important in the future. In previous studies population extinction risk in stochastic environmental conditions has been tied to an interaction between population density dependence and the temporal autocorrelation of environmental fluctuations. When populations interact with each other, forming ecological communities, the response of such species assemblages to environmental stochasticity can depend, e.g., on trophic structure in the food web and the similarity in species-specific responses to environmental conditions. The results presented in this thesis indicate that variation in the correlation structure between species-specific environmental responses (environmental correlation) can have important qualitative and quantitative effects on community persistence and biomass stability in autocorrelated (coloured) environments. In addition, reddened environmental stochasticity and ecological drift processes (such as demographic stochasticity and dispersal limitation) have important implications for patterns in species relative abundances and community dynamics over time and space. Our understanding of patterns in biodiversity at local and global scale can be enhanced by considering the relevance of different drift processes for community organisation and dynamics. Although the results laid out in this thesis are based on mathematical simulation models, they can be valuable in planning effective empirical studies as well as in interpreting existing empirical results. Most of the metrics considered here are directly applicable to empirical data.
Resumo:
Nucleation is the first step in the formation of a new phase inside a mother phase. Two main forms of nucleation can be distinguished. In homogeneous nucleation, the new phase is formed in a uniform substance. In heterogeneous nucleation, on the other hand, the new phase emerges on a pre-existing surface (nucleation site). Nucleation is the source of about 30% of all atmospheric aerosol which in turn has noticeable health effects and a significant impact on climate. Nucleation can be observed in the atmosphere, studied experimentally in the laboratory and is the subject of ongoing theoretical research. This thesis attempts to be a link between experiment and theory. By comparing simulation results to experimental data, the aim is to (i) better understand the experiments and (ii) determine where the theory needs improvement. Computational fluid dynamics (CFD) tools were used to simulate homogeneous onecomponent nucleation of n-alcohols in argon and helium as carrier gases, homogeneous nucleation in the water-sulfuric acid-system, and heterogeneous nucleation of water vapor on silver particles. In the nucleation of n-alcohols, vapor depletion, carrier gas effect and carrier gas pressure effect were evaluated, with a special focus on the pressure effect whose dependence on vapor and carrier gas properties could be specified. The investigation of nucleation in the water-sulfuric acid-system included a thorough analysis of the experimental setup, determining flow conditions, vapor losses, and nucleation zone. Experimental nucleation rates were compared to various theoretical approaches. We found that none of the considered theoretical descriptions of nucleation captured the role of water in the process at all relative humidities. Heterogeneous nucleation was studied in the activation of silver particles in a TSI 3785 particle counter which uses water as its working fluid. The role of the contact angle was investigated and the influence of incoming particle concentrations and homogeneous nucleation on counting efficiency determined.
Resumo:
Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.
Resumo:
Nucleation is the first step in a phase transition where small nuclei of the new phase start appearing in the metastable old phase, such as the appearance of small liquid clusters in a supersaturated vapor. Nucleation is important in various industrial and natural processes, including atmospheric new particle formation: between 20 % to 80 % of atmospheric particle concentration is due to nucleation. These atmospheric aerosol particles have a significant effect both on climate and human health. Different simulation methods are often applied when studying things that are difficult or even impossible to measure, or when trying to distinguish between the merits of various theoretical approaches. Such simulation methods include, among others, molecular dynamics and Monte Carlo simulations. In this work molecular dynamics simulations of the homogeneous nucleation of Lennard-Jones argon have been performed. Homogeneous means that the nucleation does not occur on a pre-existing surface. The simulations include runs where the starting configuration is a supersaturated vapor and the nucleation event is observed during the simulation (direct simulations), as well as simulations of a cluster in equilibrium with a surrounding vapor (indirect simulations). The latter type are a necessity when the conditions prevent the occurrence of a nucleation event in a reasonable timeframe in the direct simulations. The effect of various temperature control schemes on the nucleation rate (the rate of appearance of clusters that are equally able to grow to macroscopic sizes and to evaporate) was studied and found to be relatively small. The method to extract the nucleation rate was also found to be of minor importance. The cluster sizes from direct and indirect simulations were used in conjunction with the nucleation theorem to calculate formation free energies for the clusters in the indirect simulations. The results agreed with density functional theory, but were higher than values from Monte Carlo simulations. The formation energies were also used to calculate surface tension for the clusters. The sizes of the clusters in the direct and indirect simulations were compared, showing that the direct simulation clusters have more atoms between the liquid-like core of the cluster and the surrounding vapor. Finally, the performance of various nucleation theories in predicting simulated nucleation rates was investigated, and the results among other things highlighted once again the inadequacy of the classical nucleation theory that is commonly employed in nucleation studies.