4 resultados para angiotensin AT(2) antagonist
em Helda - Digital Repository of University of Helsinki
Resumo:
Most of the diseases affecting public health, like hypertension, are multifactorial by etiology. Hypertension is influenced by genetic, life style and environmental factors. Estimation of the influence of genes to the risk of essential hypertension varies from 30 to 50%. It is plausible that in most of the cases susceptibility to hypertension is determined by the action of more than one gene. Although the exact molecular mechanism underlying essential hypertension remains obscure, several monogenic forms of hypertension have been identified. Since common genetic variations may predict, not only to susceptibility to hypertension, but also response to antihypertensive drug therapy, pharmacogenetic approaches may provide useful markers in finding relations between candidate genes and phenotypes of hypertension. The aim of this study was to identify genetic mutations and polymorphisms contributing to human hypertension, and examine their relationships to intermediate phenotypes of hypertension, such as blood pressure (BP) responses to antihypertensive drugs or biochemical laboratory values. Two groups of patients were investigated in the present study. The first group was collected from the database of patients investigated in the Hypertension Outpatient Ward, Helsinki University Central Hospital, and consisted of 399 subjects considered to have essential hypertension. Frequncies of the mutant or variant alleles were compared with those in two reference groups, healthy blood donors (n = 301) and normotensive males (n = 175). The second group of subjects with hypertension was collected prospectively. The study subjects (n=313) underwent a protocol lasting eight months, including four one-month drug treatment periods with antihypertensive medications (thiazide diuretic, β-blocker, calcium channel antagonist, and an angiotensin II receptor antagonist). BP responses and laboratory values were related to polymorphims of several candidate genes of the renin-angiotensin system (RAS). In addition, two patients with typical features of Liddle’s syndrome were screened for mutations in kidney epithelial sodium channel (ENaC) subunits. Two novel mutations causing Liddle’s syndrome were identified. The first mutation identified located in the beta-subunit of ENaC and the second mutation found located in the gamma-subunit, constituting the first identified Liddle mutation locating in the extracellular domain. This mutation showed 2-fold increase in channel activity in vitro. Three gene variants, of which two are novel, were identified in ENaC subunits. The prevalence of the variants was three times higher in hypertensive patients (9%) than in reference groups (3%). The variant carriers had increased daily urinary potassium excretion rate in relation to their renin levels compared with controls suggesting increased ENaC activity, although in vitro they did not show increased channel activity. Of the common polymorphisms of the RAS studied, angiotensin II receptor type I (AGTR1) 1166 A/C polymorphism was associated with modest changes in RAS activity. Thus, patients homozygous for the C allele tended to have increased aldosterone and decreased renin levels. In vitro functional studies using transfected HEK293 cells provided additional evidence that the AGTR1 1166 C allele may be associated with increased expression of the AGTR1. Common polymorphisms of the alpha-adducin and the RAS genes did not significantly predict BP responses to one-month monotherapies with hydroclorothiazide, bisoprolol, amlodipin, or losartan. In conclusion, two novel mutations of ENaC subunits causing Liddle’s syndrome were identified. In addition, three common ENaC polymorphisms were shown to be associated with occurrence of essential hypertension, but their exact functional and clinical consequences remain to be explored. The AGTR1 1166 C allele may modify the endocrine phenotype of hypertensive patients, when present in homozygous form. Certain widely studied polymorphisms of the ACE, angiotensinogen, AGTR1 and alpha-adducin genes did not significantly affect responses to a thiazide, β-blocker, calcium channel antagonist, and angiotensin II receptor antagonist.
Resumo:
The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.
Resumo:
Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.