28 resultados para air transport

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports investigations into the paper wetting process and its effects on the surface roughness and the out-of-plane (ZD) stiffness of machine-made paper. The aim of this work was to test the feasibility of employing air-borne ultrasound methods to determine surface roughness (by reflection) and ZD stiffness (by through transmission) of paper during penetration of distilled water, isopropanol and their mixtures. Air-borne ultrasound provides a non-contacting way to evaluate sample structure and mechanics during the liquid penetration event. Contrary to liquid immersion techniques, an air-borne measurement allows studying partial wetting of paper. In addition, two optical methods were developed to reveal the liquid location in paper during wetting. The laser light through transmission method was developed to monitor the liquid location in partially wetted paper. The white light reflection method was primarily used to monitor the penetration of the liquid front in the thickness direction. In the latter experiment the paper was fully wetted. The main results of the thesis were: 1) Liquid penetration induced surface roughening was quantified by monitoring the ultrasound reflection from the paper surface. 2) Liquid penetration induced stiffness alteration in the ZD of paper could be followed by measuring the change in the ultrasound ZD resonance in paper. 3) Through transmitted light revealed the liquid location in the partially wetted paper. 4) Liquid movement in the ZD of the paper could be observed by light reflection. The results imply that the presented ultrasonic means can without contact measure the alteration of paper roughness and stiffness during liquid transport. These methods can help avoiding over engineering the paper which reduces raw material and energy consumption in paper manufacturing. The presented optical means can estimate paper specific wetting properties, such as liquid penetration speed, transport mechanisms and liquid location within the paper structure. In process monitoring, these methods allow process tuning and manufacturing of paper with engineered liquid transport characteristics. With such knowledge the paper behaviour during printing can be predicted. These findings provide new methods for paper printing, surface sizing, and paper coating research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is focused on the effects of energetic particle precipitation of solar or magnetospheric origin on the polar middle atmosphere. The energetic charged particles have access to the atmosphere in the polar areas, where they are guided by the Earth's magnetic field. The particles penetrate down to 20-100 km altitudes (stratosphere and mesosphere) ionising the ambient air. This ionisation leads to production of odd nitrogen (NOx) and odd hydrogen species, which take part in catalytic ozone destruction. NOx has a very long chemical lifetime during polar night conditions. Therefore NOx produced at high altitudes during polar night can be transported to lower stratospheric altitudes. Particular emphasis in this work is in the use of both space and ground based observations: ozone and NO2 measurements from the GOMOS instrument on board the European Space Agency's Envisat-satellite are used together with subionospheric VLF radio wave observations from ground stations. Combining the two observation techniques enabled detection of NOx enhancements throughout the middle atmosphere, including tracking the descent of NOx enhancements of high altitude origin down to the stratosphere. GOMOS observations of the large Solar Proton Events of October-November 2003 showed the progression of the SPE initiated NOx enhancements through the polar winter. In the upper stratosphere, nighttime NO2 increased by an order of magnitude, and the effect was observed to last for several weeks after the SPEs. Ozone decreases up to 60 % from the pre-SPE values were observed in the upper stratosphere nearly a month after the events. Over several weeks the GOMOS observations showed the gradual descent of the NOx enhancements to lower altitudes. Measurements from years 2002-2006 were used to study polar winter NOx increases and their connection to energetic particle precipitation. NOx enhancements were found to occur in a good correlation with both increased high-energy particle precipitation and increased geomagnetic activity. The average wintertime polar NOx was found to have a nearly linear relationship with the average wintertime geomagnetic activity. The results from this thesis work show how important energetic particle precipitation from outside the atmosphere is as a source of NOx in the middle atmosphere, and thus its importance to the chemical balance of the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse cholesterol transport (RCT) is an important function of high-density lipoproteins (HDL) in the protection of atherosclerosis. RCT is the process by which HDL stimulates cholesterol removal from peripheral cells and transports it to the liver for excretion. Premenopausal women have a reduced risk for atherosclerosis compared to age-matched men and there exists a positive correlation for serum 17β-estradiol (E2) and HDL levels in premenopausal women supporting the role of E2 in atherosclerosis prevention. In premenopausal women, E2 associates with HDL as E2 fatty acyl esters. Discovery of the cellular targets, metabolism, and assessment of the macrophage cholesterol efflux potential of these HDL-associated E2 fatty acyl esters were the major objectives of this thesis (study I, III, and IV). Soy phytoestrogens, which are related to E2 in both structure and function, have been proposed to be protective against atherosclerosis but the evidence to support these claims is conflicting. Therefore, another objective of this thesis was to assess the ability of serum from postmenopausal women, treated with isoflavone supplements (compared to placebo), to promote macrophage cholesterol efflux (study II). The scope of this thesis was to cover the roles that HDL-associated E2 fatty acyl esters have in the cellular aspects of RCT and to determine if soy isoflavones can also influence RCT mechanisms. SR-BI was a pivotal cellular receptor, responsible for hepatic and macrophage uptake and macrophage cholesterol efflux potential of HDL-associated E2 fatty acyl esters. Functional SR-BI was also critical for proper LCAT esterification activity which could impact HDL-associated E2 fatty acyl ester assembly and its function. In hepatic cells, LDL receptors also contributed to HDL-associated E2 fatty acyl esters uptake and in macrophage cells, estrogen receptors (ERs) were necessary for both HDL-associated E2 ester-specific uptake and cholesterol efflux potential. HDL-containing E2 fatty acyl esters (E2-FAE) stimulated enhanced cholesterol efflux compared to male HDL (which are deficient in E2) demonstrating the importance of the E2 ester in this process. To support this, premenopausal female HDL, which naturally contains E2, showed greater macrophage cholesterol efflux compared to males. Additionally, hepatic and macrophage cells hydrolyzed the HDL-associated E2 fatty acyl ester into unesterified E2. This could have important biological ramifications because E2, not the esterified form, has potent cellular effects which may influence RCT mechanisms. Lastly, soy isoflavone supplementation in postmenopausal women did not modulate ABCA1-specific macrophage cholesterol efflux but did increase production of plasma pre-β HDL levels, a subclass of HDL. Therefore, the impact of isoflavones on RCT and cardiovascular health needs to be further investigated. Taken as a whole, HDL-associated E2 fatty acyl esters from premenopausal women and soy phytoestrogen treatment in postmenopausal women may be important factors that increase the efficiency of RCT through cellular lipoprotein-related processes and may have direct implications on the cardiovascular health of women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles can cause detrimental environmental and health effects. The particles and their precursor gases are emitted from various anthropogenic and natural sources. It is important to know the origin and properties of aerosols to efficiently reduce their harmful effects. The diameter of aerosol particles (Dp) varies between ~0.001 and ~100 μm. Fine particles (PM2.5: Dp < 2.5 μm) are especially interesting because they are the most harmful and can be transported over long distances. The aim of this thesis is to study the impact on air quality by pollution episodes of long-range transported aerosols affecting the composition of the boundary-layer atmosphere in remote and relatively unpolluted regions of the world. The sources and physicochemical properties of aerosols were investigated in detail, based on various measurements (1) in southern Finland during selected long-range transport (LRT) pollution episodes and unpolluted periods and (2) over the Atlantic Ocean between Europe and Antarctica during a voyage. Furthermore, the frequency of LRT pollution episodes of fine particles in southern Finland was investigated over a period of 8 years, using long-term air quality monitoring data. In southern Finland, the annual mean PM2.5 mass concentrations were low but LRT caused high peaks of daily mean concentrations every year. At an urban background site in Helsinki, the updated WHO guideline value (24-h PM2.5 mean 25 μg/m3) was exceeded during 1-7 LRT episodes each year during 1999-2006. The daily mean concentrations varied between 25 and 49 μg/m3 during the episodes, which was 3-6 times higher than the mean concentration in the long term. The in-depth studies of selected LRT episodes in southern Finland revealed that biomass burning in agricultural fields and wildfires, occurring mainly in Eastern Europe, deteriorated air quality on a continental scale. The strongest LRT episodes of fine particles resulted from open biomass-burning fires but the emissions from other anthropogenic sources in Eastern Europe also caused significant LRT episodes. Particle mass and number concentrations increased strongly in the accumulation mode (Dp ~ 0.09-1 μm) during the LRT episodes. However, the concentrations of smaller particles (Dp < 0.09 μm) remained low or even decreased due to the uptake of vapours and molecular clusters by LRT particles. The chemical analysis of individual particles showed that the proportions of several anthropogenic particle types increased (e.g. tar balls, metal oxides/hydroxides, spherical silicate fly ash particles and various calcium-rich particles) in southern Finland during an LRT episode, when aerosols originated from the polluted regions of Eastern Europe and some open biomass-burning smoke was also brought in by LRT. During unpolluted periods when air masses arrived from the north, the proportions of marine aerosols increased. In unpolluted rural regions of southern Finland, both accumulation mode particles and small-sized (Dp ~ 1-3 μm) coarse mode particles originated mostly from LRT. However, the composition of particles was totally different in these size fractions. In both size fractions, strong internal mixing of chemical components was typical for LRT particles. Thus, the aging of particles has significant impacts on their chemical, hygroscopic and optical properties, which can largely alter the environmental and health effects of LRT aerosols. Over the Atlantic Ocean, the individual particle composition of small-sized (Dp ~ 1-3 μm) coarse mode particles was affected by continental aerosol plumes to distances of at least 100-1000 km from the coast (e.g. pollutants from industrialized Europe, desert dust from the Sahara and biomass-burning aerosols near the Gulf of Guinea). The rate of chloride depletion from sea-salt particles was high near the coasts of Europe and Africa when air masses arrived from polluted continental regions. Thus, the LRT of continental aerosols had significant impacts on the composition of the marine boundary-layer atmosphere and seawater. In conclusion, integration of the results obtained using different measurement techniques captured the large spatial and temporal variability of aerosols as observed at terrestrial and marine sites, and assisted in establishing the causal link between land-bound emissions, LRT and air quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and maltotriose are the two most abundant sugars in brewer s wort, and thus brewer s yeast s ability to utilize them efficiently is of major importance in the brewing process. The increasing tendency to utilize high and very-high-gravity worts containing increased concentrations of maltose and maltotriose renders the need for efficient transport of these sugars even more pronounced. Residual maltose and especially maltotriose are quite often present especially after high and very-high-gravity fermentations. Sugar uptake capacity has been shown to be the rate limiting factor for maltose and maltotriose utilization. The main aim of the present study was to find novel ways to improve maltose and maltotriose utilization during the main fermentation. Maltose and maltotriose uptake characteristics of several ale and lager strains were studied. Genotype determination of the genes needed for maltose and maltotriose utilization was performed. Maltose uptake inhibition studies were performed to reveal the dominant transporter types actually functioning in each of the strains. Temperature-dependence of maltose transport was studied for ale and for lager strains as well as for each of the single sugar transporter proteins Agt1p, Malx1p and Mtt1p. The AGT1 promoter regions of one ale and two lager strains were sequenced by chromosome walking and the promoter elements were searched for using computational methods. The results showed that ale and lager strains predominantly use different maltose and maltotriose transporter types for maltose and maltotriose uptake. Agt1 transporter was found to be the dominant maltose/maltotriose transporter in the ale strains whereas Malx1 and Mtt1- type transporters dominated in the lager strains. All lager strains studied were found to possess a non-functional Agt1 transporter. The ale strains were observed to be more sensitive to temperature decrease in their maltose uptake compared to the lager strains. Single transporters were observed to differ in their sensitivity to temperature decrease and their temperature-dependence was shown to decrease in the order Agt1≥Malx1>Mtt1. The different temperature-dependence between the ale and lager strains was observed to be due to the different dominant maltose/maltotriose transporters ale and lager strains possessed. The AGT1 promoter regions of ale and lager strains were found to differ markedly from the corresponding regions of laboratory strains. The ale strain was found to possess an extra MAL-activator binding site compared to the lager strains. Improved maltose and maltotriose uptake capacity was obtained with a modified lager strain where the AGT1 gene was repaired and put under the control of a strong promoter. Modified strains fermented wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. Significant savings in the main fermentation time were obtained when modified strains were used. In high-gravity wort fermentations 8 20% and in very-high-gravity wort fermentations even 11 37% time savings were obtained. These are economically significant changes and would cause a marked increase in annual output from the same-size of brewhouse and fermentor facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.