8 resultados para aboveground biomass

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg/yr for understorey spruce to 7 kg/yr for dominant pine) when the trees were 100 years old. Tree biomass was estimated to be about 70 Mg/ha in Young-Stand and about 220 Mg/ha in Mature-Stand. In the region (58.00-62.13 ºN, 14-34 ºE, ≤ 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg/ha at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg/ha with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg/ha. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO2, 21 t CH4, 184 t CO, 0.15 t N20, 5 t NOX and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO2, 2,900 t CH4, 25,300 t CO, 20 t N2O, 720 t NOX and 470 t NO per annum, while the total carbon released in the atmosphere would be 181,000 t annually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several cyanobacterial genera produce the hepatotoxins, microcystins. Microcystins are produced only in cells that have microcystin synthetase gene (mcy) clusters, which encode enzyme complexes involved in microcystin biosynthesis. Microcystin-producing and nonmicrocystin-producing genotypes of single cyanobacterial genus may occur simultaneously in situ. Previously, the effects of environmental factors on the growth and microcystin production of cyanobacteria have mainly been studied by means of isolated cyanobacteria cultures in the laboratory. Studies in the field have been difficult, owing to the lack of methods to identify and quantify the different genotypes. In this study, genus-specific microcystin synthetase E (mcyE) gene primers were designed and a method to identify and quantify the mcyE copy numbers was developed and used in situ. Microcystis and Anabaena mcyE genes were observed in two Finnish lakes. Microcystis appeared to be the most abundant microcystin producer in Lake Tuusulanjärvi and in one basin of Lake Hiidenvesi. Because the most potent microcystin-producing genus of a lake can be identified, it will be possible in the future to design genus-targeted strategies for lake restoration. Effects of P and N concentrations on the biomass of microcystin-producing and nonmicrocystin-producing Microcystis strains and an Anabaena strain were studied in cultures. P and N concentrations and their combined effect increased cyanobacterial biomass of all Microcystis strains. The biomass of microcystin-producing Microcystis was higher than that of nonmicrocystin-producing strains at high nutrient concentrations. The P concentration increased Anabaena biomass, but the effect of N concentration was statistically insignificant for growth yield, probably due to the ability of the genus to fix molecular N2. P and N concentrations and combined nutrients caused an increase in cellular microcystin concentrations of the Microcystis strain cultivated in chemostat cultures. Cyanobacteria are able to hydrolyse nutrients from organic matter through extracellular enzyme activities. Leucine aminopeptidase (LAP) activity was observed in an axenic N2-fixing Anabaena strain grown in batch cultures. The P concentration caused a statistically significant increase in LAP activity, whereas the effect of N concentration was insignificant. The highest LAP activities were observed in the most eutrophic basins of Lake Hiidenvesi. LAP activity probably originated mostly from attached heterotrophic bacteria and less from cyanobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forest vegetation takes up atmospheric carbon dioxide (CO2) in photosynthesis. Part of the fixed carbon is released back into the atmosphere during plant respiration but a substantial part is stored as plant biomass, especially in the stems of trees. Carbon also accumulates in the soil as litter and via the roots. CO2 is released into the atmosphere from these carbon stocks in the decomposition of dead biomass. Carbon balance of a forest stand is the difference between the CO2 uptake and CO2 efflux. This study quantifies and analyses the dynamics of carbon balance and component CO2 fluxes in four Southern Finnish Scots pine stands that covered the typical economic rotation time of 80 years. The study was based on direct flux measurements with chambers and eddy covariance (EC), and modelling of component CO2 fluxes. The net CO2 exchange of the stand was partitioned into component fluxes: photosynthesis of trees and ground vegetation, respiration of tree foliage and stems, and CO2 efflux from the soil. The relationships between the component fluxes and the environmental factors (light, temperature, atmospheric CO2, air humidity and soil moisture) were studied with mathematical modelling. The annual CO2 balance varied from a source of about 400 g C/m2 at a recently clearcut site to net CO2 uptake of 200 300 g C/m2 in a middle-aged (40-year-old) and a mature (75-year-old) stand. A 12-year-old sapling site was at the turning point from source to a sink of CO2. In the middle-aged stand, photosynthetic production was dominated by trees. Under closed pine canopies, ground vegetation accounted for 10 20% of stand photosynthesis whereas at the open sites the proportion and also the absolute photosynthesis of ground vegetation was much higher. The aboveground respiration was dominated by tree foliage which accounted for one third of the ecosystem respiration. Rate of wood respiration was in the order of 10% of total ecosystem respiration. CO2 efflux from the soil dominated the ecosystem respiratory fluxes in all phases of stand development. Instantaneous and delayed responses to the environmental driving factors could predict well within-year variability in photosynthetic production: In the short term and during the growing season photosynthesis follows primarily light while the seasonal variation is more strongly connected to temperature. The temperature relationship of the annual cycle of photosynthesis was found to be almost equal in the southern boreal zone and at the timberline in the northern boreal zone. The respiratory fluxes showed instantaneous and seasonal temperature relationships but they could also be connected to photosynthesis at an annual timescale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.