4 resultados para XCModel, cad 3d 2d, computer graphic, 64 bit porting, migrazione, analisi statica, metodi formali, modellazione resa rendering

em Helda - Digital Repository of University of Helsinki


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been a demand for uniform CAD standards in the construction industry ever since the large-scale introduction of computer aided design systems in the late 1980s. While some standards have been widely adopted without much formal effort, other standards have failed to gain support even though considerable resources have been allocated for the purpose. Establishing a standard concerning building information modeling has been one particularly active area of industry development and scientific interest within recent years. In this paper, four different standards are discussed as cases: the IGES and DXF/DWG standards for representing the graphics in 2D drawings, the ISO 13567 standard for the structuring of building information on layers, and the IFC standard for building product models. Based on a literature study combined with two qualitative interview studies with domain experts, a process model is proposed to describe and interpret the contrasting histories of past CAD standardisation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greatest effect on reducing mortality in breast cancer comes from the detection and treatment of invasive cancer when it is as small as possible. Although mammography screening is known to be effective, observer errors are frequent and false-negative cancers can be found in retrospective studies of prior mammograms. In the year 2001, 67 women with 69 surgically proven cancers detected at screening in the Mammography Centre of Helsinki University Hospital had previous mammograms as well. These mammograms were analyzed by an experienced screening radiologist, who found that 36 lesions were already visible in previous screening rounds. CAD (Second Look v. 4.01) detected 23 of these missed lesions. Eight readers with different kinds of experience with mammography screening read the films of 200 women with and without CAD. These films included 35 of those missed lesions and 16 screen-detected cancers. CAD sensitivity was 70.6% and specificity 15.8%. Use of CAD lengthened the mean time spent for readings but did not significantly affect readers sensitivities or specificities. Therefore the use of applied version of CAD (Second Look v. 4.01) is questionable. Because none of those eight readers found exactly same cancers, two reading methods were compared: summarized independent reading (at least a single cancer-positive opinion within the group considered decisive) and conference consensus reading (the cancer-positive opinion of the reader majority was considered decisive). The greatest sensitivity of 74.5% was achieved when the independent readings of 4 best-performing readers were summarized. Overall the summarized independent readings were more sensitive than conference consensus readings (64.7% vs. 43.1%) while there was far less difference in mean specificities (92.4% vs. 97.7%). After detecting suspicious lesion, the radiologist has to decide what is the most accurate, fast, and cost-effective means of further work-up. The feasibility of FNAC and CNB in the diagnosis of breast lesions was compared in non-randomised, retrospective study of 580 (503 malignant) breast lesions of 572 patients. The absolute sensitivity for CNB was better than for FNAC, 96% (206/214) vs. 67% (194/289) (p < 0.0001). An additional needle biopsy or surgical biopsy was performed for 93 and 62 patients with FNAC, but for only 2 and 33 patients with CNB. The frequent need of supplement biopsies and unnecessary axillary operations due to false-positive findings made FNAC (294 ) more expensive than CNB (223 ), and because the advantage of quick analysis vanishes during the overall diagnostic and referral process, it is recommendable to use CNB as initial biopsy method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layering is a widely used method for structuring data in CAD-models. During the last few years national standardisation organisations, professional associations, user groups for particular CAD-systems, individual companies etc. have issued numerous standards and guidelines for the naming and structuring of layers in building design. In order to increase the integration of CAD data in the industry as a whole ISO recently decided to define an international standard for layer usage. The resulting standard proposal, ISO 13567, is a rather complex framework standard which strives to be more of a union than the least common denominator of the capabilities of existing guidelines. A number of principles have been followed in the design of the proposal. The first one is the separation of the conceptual organisation of information (semantics) from the way this information is coded (syntax). The second one is orthogonality - the fact that many ways of classifying information are independent of each other and can be applied in combinations. The third overriding principle is the reuse of existing national or international standards whenever appropriate. The fourth principle allows users to apply well-defined subsets of the overall superset of possible layernames. This article describes the semantic organisation of the standard proposal as well as its default syntax. Important information categories deal with the party responsible for the information, the type of building element shown, whether a layer contains the direct graphical description of a building part or additional information needed in an output drawing etc. Non-mandatory information categories facilitate the structuring of information in rebuilding projects, use of layers for spatial grouping in large multi-storey projects, and storing multiple representations intended for different drawing scales in the same model. Pilot testing of ISO 13567 is currently being carried out in a number of countries which have been involved in the definition of the standard. In the article two implementations, which have been carried out independently in Sweden and Finland, are described. The article concludes with a discussion of the benefits and possible drawbacks of the standard. Incremental development within the industry, (where ”best practice” can become ”common practice” via a standard such as ISO 13567), is contrasted with the more idealistic scenario of building product models. The relationship between CAD-layering, document management product modelling and building element classification is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.