26 resultados para Weighted Lebesgue Space
em Helda - Digital Repository of University of Helsinki
Resumo:
The concept of an atomic decomposition was introduced by Coifman and Rochberg (1980) for weighted Bergman spaces on the unit disk. By the Riemann mapping theorem, functions in every simply connected domain in the complex plane have an atomic decomposition. However, a decomposition resulting from a conformal mapping of the unit disk tends to be very implicit and often lacks a clear connection to the geometry of the domain that it has been mapped into. The lattice of points, where the atoms of the decomposition are evaluated, usually follows the geometry of the original domain, but after mapping the domain into another this connection is easily lost and the layout of points becomes seemingly random. In the first article we construct an atomic decomposition directly on a weighted Bergman space on a class of regulated, simply connected domains. The construction uses the geometric properties of the regulated domain, but does not explicitly involve any conformal Riemann map from the unit disk. It is known that the Bergman projection is not bounded on the space L-infinity of bounded measurable functions. Taskinen (2004) introduced the locally convex spaces LV-infinity consisting of measurable and HV-infinity of analytic functions on the unit disk with the latter being a closed subspace of the former. They have the property that the Bergman projection is continuous from LV-infinity onto HV-infinity and, in some sense, the space HV-infinity is the smallest possible substitute to the space H-infinity of analytic functions. In the second article we extend the above result to a smoothly bounded strictly pseudoconvex domain. Here the related reproducing kernels are usually not known explicitly, and thus the proof of continuity of the Bergman projection is based on generalised Forelli-Rudin estimates instead of integral representations. The minimality of the space LV-infinity is shown by using peaking functions first constructed by Bell (1981). Taskinen (2003) showed that on the unit disk the space HV-infinity admits an atomic decomposition. This result is generalised in the third article by constructing an atomic decomposition for the space HV-infinity on a smoothly bounded strictly pseudoconvex domain. In this case every function can be presented as a linear combination of atoms such that the coefficient sequence belongs to a suitable Köthe co-echelon space.
Resumo:
This thesis consists of three articles on Orlicz-Sobolev capacities. Capacity is a set function which gives information of the size of sets. Capacity is useful concept in the study of partial differential equations, and generalizations of exponential-type inequalities and Lebesgue point theory, and other topics related to weakly differentiable functions such as functions belonging to some Sobolev space or Orlicz-Sobolev space. In this thesis it is assumed that the defining function of the Orlicz-Sobolev space, the Young function, satisfies certain growth conditions. In the first article, the null sets of two different versions of Orlicz-Sobolev capacity are studied. Sufficient conditions are given so that these two versions of capacity have the same null sets. The importance of having information about null sets lies in the fact that the sets of capacity zero play similar role in the Orlicz-Sobolev space setting as the sets of measure zero do in the Lebesgue space and Orlicz space setting. The second article continues the work of the first article. In this article, it is shown that if a Young function satisfies certain conditions, then two versions of Orlicz-Sobolev capacity have the same null sets for its complementary Young function. In the third article the metric properties of Orlicz-Sobolev capacities are studied. It is usually difficult or impossible to calculate a capacity of a set. In applications it is often useful to have estimates for the Orlicz-Sobolev capacities of balls. Such estimates are obtained in this paper, when the Young function satisfies some growth conditions.
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.
Resumo:
Space in musical semiosis is a study of musical meaning, spatiality and composition. Earlier studies on musical composition have not adequately treated the problems of musical signification. Here, composition is considered an epitomic process of musical signification. Hence the core problems of composition theory are core problems of musical semiotics. The study employs a framework of naturalist pragmatism, based on C. S. Peirce’s philosophy. It operates on concepts such as subject, experience, mind and inquiry, and incorporates relevant ideas of Aristotle, Peirce and John Dewey into a synthetic view of esthetic, practic, and semiotic for the benefit of grasping musical signification process as a case of semiosis in general. Based on expert accounts, music is depicted as real, communicative, representational, useful, embodied and non-arbitrary. These describe how music and the musical composition process are mental processes. Peirce’s theories are combined with current morphological theories of cognition into a view of mind, in which space is central. This requires an analysis of space, and the acceptance of a relativist understanding of spatiality. This approach to signification suggests that mental processes are spatially embodied, by virtue of hard facts of the world, literal representations of objects, as well as primary and complex metaphors each sharing identities of spatial structures. Consequently, music and the musical composition process are spatially embodied. Composing music appears as a process of constructing metaphors—as a praxis of shaping and reshaping features of sound, representable from simple quality dimensions to complex domains. In principle, any conceptual space, metaphorical or literal, may set off and steer elaboration, depending on the practical bearings on the habits of feeling, thinking and action, induced in musical communication. In this sense, it is evident that music helps us to reorganize our habits of feeling, thinking, and action. These habits, in turn, constitute our existence. The combination of Peirce and morphological approaches to cognition serves well for understanding musical and general signification. It appears both possible and worthwhile to address a variety of issues central to musicological inquiry in the framework of naturalist pragmatism. The study may also contribute to the development of Peircean semiotics.
Resumo:
Mitochondria have evolved from endosymbiotic alpha-proteobacteria. During the endosymbiotic process early eukaryotes dumped the major component of the bacterial cell wall, the peptidoglycan layer. Peptidoglycan is synthesized and maintained by active-site serine enzymes belonging to the penicillin-binding protein and the β-lactamase superfamily. Mammals harbor a protein named LACTB that shares sequence similarity with bacterial penicillin-binding proteins and β-lactamases. Since eukaryotes lack the synthesis machinery for peptidoglycan, the physiological role of LACTB is intriguing. Recently, LACTB has been validated in vivo to be causative for obesity, suggesting that LACTB is implicated in metabolic processes. The aim of this study was to investigate the phylogeny, structure, biochemistry and cell biology of LACTB in order to elucidate its physiological function. Phylogenetic analysis revealed that LACTB has evolved from penicillin binding-proteins present in the bacterial periplasmic space. A structural model of LACTB indicates that LACTB shares characteristic features common to all penicillin-binding proteins and β-lactamases. Recombinat LACTB protein expressed in E. coli was recovered in significant quantities. Biochemical and cell biology studies showed that LACTB is a soluble protein localized in the mitochondrial intermembrane space. Further analysis showed that LACTB preprotein underwent proteolytic processing disclosing an N-terminal tetrapeptide motif also found in a set of cell death-inducing proteins. Electron microscopy structural studies revealed that LACTB can polymerize to form stable filaments with lengths ranging from twenty to several hundred nanometers. These data suggest that LACTB filaments define a distinct microdomain in the intermembrane space. A possible role of LACTB filaments is proposed in the intramitochondrial membrane organization and microcompartmentation. The implications of these findings offer novel insight into the evolution of mitochondria. Further studies of the LACTB function might provide a tool to treat mitochondria-related metabolic diseases.
Resumo:
A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.
Resumo:
Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Resumo:
We present a measurement of the top quark mass with t-tbar dilepton events produced in p-pbar collisions at the Fermilab Tevatron $\sqrt{s}$=1.96 TeV and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb$^{-1}$, are selected as t-tbar candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ($\phi_{\nu_1},\phi_{\nu_2}$) of neutrinos and reconstruct the top quark mass for each $\phi_{\nu_1},\phi_{\nu_2}$ pair by minimizing a $\chi^2$ function in the t-tbar dilepton hypothesis. We assign $\chi^2$-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t-tbar and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of $165.5^{+{3.4}}_{-{3.3}}$(stat.)$\pm 3.1$(syst.) GeV/$c^2$.
Resumo:
Research on cross-cultural and intercultural aspects in organizations has been traditionally conducted from an objectivist, functionalist perspective, with culture treated as an independent variable, and often the key explanatory factor. In order to do justice to the ontological relativity of the phenomena studied, more subjectivist research on intercultural interactions, and especially on their relationships with the dynamics of cultural identity construction, is needed. The present research seeks to address this gap by focusing on bicultural interactions in organizations, as they are experienced by the involved individuals. It is argued that such bicultural situations see the emergence of a space of hybridity, which is here called a ‘third space’, and which can be understood as providing ‘occasions for sensemaking’: it is this individual sensemaking that is of particular interest in the empirical narrative study. A first overall aim of the study is to reach an understanding of the dynamics of bicultural interactions in organizations; an understanding not only of the potential for learning and emancipatory sensemaking, but also of the possibility of conflict and alienatory ordering (this is mainly addressed in the theoretical essays 1 and 2). Further, a second overall aim of the study is to analyze the reflexive identity construction of four young French expatriates involved in such bicultural interactions in organizations in Finland, in order to examine the extent to which their expatriation experiences have allowed for an emancipatory opportunity in their cases (in essays 3 and 4). The primary theoretical contribution in this study lies in its new articulation of the dynamics of bicultural interactions in organizations. The ways in which the empirical material is analyzed bring about methodological contributions: since the expatriates’ accounts are bound to be some kind of construction, the analysis is made from angles that point to how the self-narratives construct reality. There are two such angles here: a ‘performative’ one and a ‘spatial’ one. The most important empirical contributions lie in the analysis of, on the one hand, the alternative uses that the young expatriates made of the notion of ‘national culture’ in their self-narratives, and, on the other hand, their ‘narrative practices of the third space’: their politics of escape or stabilization, their exploration of space or search for place, their emancipation from their origin or return to home as only horizon.