2 resultados para Vlp
em Helda - Digital Repository of University of Helsinki
Resumo:
Transposable elements, transposons, are discrete DNA segments that are able to move or copy themselves from one locus to another within or between their host genome(s) without a requirement for DNA homology. They are abundant residents in virtually all the genomes studied, for instance, the genomic portion of TEs is approximately 3% in Saccharomyces cerevisiae, 45% in humans, and apparently more than 70% in some plant genomes such as maize and barley. Transposons plays essential role in genome evolution, in lateral transfer of antibiotic resistance genes among bacteria and in life cycle of certain viruses such as HIV-1 and bacteriophage Mu. Despite the diversity of transposable elements they all use a fundamentally similar mechanism called transpositional DNA recombination (transposition) for the movement within and between the genomes of their host organisms. The DNA breakage and joining reactions that underlie their transposition are chemically similar in virtually all known transposition systems. The similarity of the reactions is also reflected in the structure and function of the catalyzing enzymes, transposases and integrases. The transposition reactions take place within the context of a transposition machinery, which can be particularly complex, as in the case of the VLP (virus like particle) machinery of retroelements, which in vivo contains RNA or cDNA and a number of element encoded structural and catalytic proteins. Yet, the minimal core machinery required for transposition comprises a multimer of transposase or integrase proteins and their binding sites at the element DNA ends only. Although the chemistry of DNA transposition is fairly well characterized, the components and function of the transposition machinery have been investigated in detail for only a small group of elements. This work focuses on the identification, characterization, and functional studies of the molecular components of the transposition machineries of BARE-1, Hin-Mu and Mu. For BARE-1 and Hin-Mu transpositional activity has not been shown previously, whereas bacteriophage Mu is a general model of transposition. For BARE-1, which is a retroelement of barley (Hordeum vulgare), the protein and DNA components of the functional VLP machinery were identified from cell extracts. In the case of Hin-Mu, which is a Mu-like prophage in Haemophilus influenzae Rd genome, the components of the core machinery (transposase and its binding sites) were characterized and their functionality was studied by using an in vitro methodology developed for Mu. The function of Mu core machinery was studied for its ability to use various DNA substrates: Hin-Mu end specific DNA substrates and Mu end specific hairpin substrates. The hairpin processing reaction by MuA was characterized in detail. New information was gained of all three machineries. The components or their activity required for functional BARE-1 VLP machinery and retrotransposon life cycle were present in vivo and VLP-like structures could be detected. The Hin-Mu core machinery components were identified and shown to be functional. The components of the Mu and Hin-Mu core machineries were partially interchangeable, reflecting both evolutionary conservation and flexibility within the core machineries. The Mu core machinery displayed surprising flexibility in substrate usage, as it was able to utilize Hin-Mu end specific DNA substrates and to process Mu end DNA hairpin substrates. This flexibility may be evolutionarily and mechanistically important.
Resumo:
The purpose of this research project was to understand the steps of the retrotransposon BARE (BArley REtrotransposon) life cycle, from regulation of transcription to Virus-Like Particle (VLP) formation and ultimate integration back into the genome. Our study concentrates mainly on BARE1 transcriptional regulation because transcription is the crucial first step in the retrotransposon life cycle. The BARE element is a Class I LTR (Long Terminal Repeat) retrotransposon belonging to the Copia superfamily and was originally isolated in our research group. The LTR retrotransposons are transcribed from promoters in the LTRs and encode proteins for packaging of their transcripts, the reverse transcription of the transcripts into cDNA, and integration of the cDNA back into the genome. BARE1 is translated as a single polyprotein and cleaved into the capsid protein (GAG), integrase (IN), and reverse transcriptase-RNaseH (RT-RH) by the integral aspartic proteinase (AP). The BARE retrotransposon family comprises more than 104 copies in the barley (Hordeum vulgare) genome. The element is bound by long terminal repeats (LTRs, 1829 bp) containing promoters required for replication, signals for RNA processing, and motifs necessary for the integration of the cDNA. Members of the BARE1 subfamily are transcribed, translated, and form virus-like particles. Several basic questions concerning transcription are explored in the thesis: BARE1 transcription control, promoter choice in different barley tissues, start and termination sites for BARE transcripts, and BARE1 transcript polyadenylation (I). Polyadenylation is an important step during mRNA maturation, and determines its stability and translatability among other characteristics. Our work has found a novel way used by BARE1 to make extra GAG protein, which is critical for VLP formation. The discovery that BARE1 uses one RNA population for protein synthesis and another RNA population for making cDNA has established the most important step of the BARE1 life cycle (III). The relationship between BARE1 and BARE2 has been investigated. Besides BARE, we have examined the retrotransposon Cassandra (II), which uses a very different transcriptional mechanism and a fully parasitic life cycle. In general, this work is focused on BARE1 promoter activity, transcriptional regulation including differential promoter usage and RNA pools, extra GAG protein production and VLP formation. The results of this study give new insights into transcription regulation of LTR retrotransposons.