27 resultados para Vascular smooth muscle cells

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular intimal hyperplasia is a major complication following angioplasty. The hallmark feature of this disorder is accumulation of dedifferentiated smooth muscle cells (SMCs) to the luminal side of the injured artery, cellular proliferation, migration, and synthesis of extracellular matrix. This finally results in intimal hyperplasia, which is currently considered an untreatable condition. According to current knowledge, a major part of neointimal cells derive from circulating precursor cells. This has outdated the traditional in vitro cell culture methods of studying neointimal cell migration and proliferation using cultured medial SMCs. Somatostatin and some of its analogs with different selectivity for the five somatostatin receptors (sst1 through sst5) have been shown to have vasculoprotective properties in animal studies. However, clinical trials using analogs selective for sst2/sst3/sst5 to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) have failed to show any major benefits. Sirolimus is a cell cycle inhibitor that has been suggested to act synergistically with the protein-tyrosine kinase inhibitor imatinib to inhibit intimal hyperplasia in rat already at well-tolerated submaximal oral doses. The mechanisms behind this synergy and its long-term efficacy are not known. The aim of this study was to set up an ex vivo vascular explant culture model to measure neointimal cell activity without excluding the participation of circulating progenitor cells. Furthermore, two novel potential vasculoprotective treatment strategies were evaluated in detail in rat models of intimal hyperplasia and in the ex vivo explant model: sst1/sst4-selective somatostatin receptor analogs and combination treatment with sirolimus and imatinib. This study shows how whole vessel explants can be used to study the kinetics of neointimal cells and their progenitors, and to evaluate the anti-migratory and anti-proliferative properties of potential vasculoprotective compounds. It also shows how the influx of neointimal progenitor cells occurs already during the first days after vascular injury, how the contribution of cell migration is more important in the injury response than cell proliferation, and how the adventitia actively contribute in vascular repair. The vasculoprotective effect of somatostatin is mediated preferentially through sst4, and through inhibition of cell migration rather than of proliferation, which may explain why sst2/sst3/sst5-selective analogs have failed in clinical trials. Furthermore, a brief early oral treatment with the combination of sirolimus and imatinib at submaximal doses results in long-term synergistic suppression of intimal hyperplasia. The synergy is a result of inhibition of post-operative thrombocytosis and leukocytosis, inhibition of neointimal cell migration to the injury-site, and maintenance of cell integrity by inhibition of apoptosis and SMC dedifferentiation. In conclusion, the influx of progenitor cells already during the first days after injury and the high neointimal cell migratory activity underlines the importance of early therapeutic intervention with anti-migratory compounds to prevent neointimal hyperplasia. Sst4-selective analogs and the combination therapy with sirolimus and imatinib represent potential targets for the development of such vasculoprotective therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circulatory system comprises the blood vascular system and the lymphatic vascular system. These two systems function in parallel. Blood vessels form a closed system that delivers oxygen and nutrients to the tissues and removes waste products from the tissues, while lymphatic vessels are blind-ended tubes that collect extravasated fluid and cells from the tissues and return them back to blood circulation. Development of blood and lymphatic vascular systems occurs in series. Blood vessels are formed via vasculogenesis and angiogenesis whereas lymphatic vessels develop via lymphangiogenesis, after the blood vascular system is already functional. Members of the vascular endothelial growth factor (VEGF) family are regulators of both angiogenesis and lymphangiogenesis, while members of the platelet-derived growth factor (PDGF) family are major mitogens for pericytes and smooth muscle cells and regulate formation of blood vessels. Vascular endothelial growth factor C (VEGF-C) is the major lymphatic growth factor and signaling through its receptor vascular endothelial growth factor receptor 3 (VEGFR-3) is sufficient for lymphangiogenesis in adults. We studied the role of VEGF-C in embryonic lymphangiogenesis and showed that VEGF-C is absolutely required for the formation of lymph sacs from embryonic veins. VEGFR-3 is also required for normal development of the blood vascular system during embryogenesis, as Vegfr3 knockout mice die at mid-gestation due to failure in remodeling of the blood vessels. We showed that sufficient VEGFR-3 signaling in the embryo proper is required for embryonic angiogenesis and in a dosage-sensitive manner for embryonic lymphangiogenesis. Importantly, mice deficient in both VEGFR-3 ligands, Vegfc and Vegfd, developed a normal blood vasculature, suggesting VEGF-C- and VEGF-D- independent functions for VEGFR-3 in the early embryo. Platelet-derived growth factor B (PDGF-B) signals via PDGFR-b and regulates formation of blood vessels by recruiting pericytes and smooth muscle cells around nascent endothelial tubes. We showed that PDGF-B fails to induce lymphangiogenesis when overexpressed in adult mouse skin using adenoviral vectors. However, mouse embryos lacking Pdgfb showed abnormal lymphatic vessels, suggesting that PDGF-B plays a role in lymphatic vessel maturation and separation from blood vessels during embryogenesis. Lymphatic vessels play a key role in immune surveillance, fat absorption and maintenance of fluid homeostasis in the body. However, lymphatic vessels are also involved in various diseases, such as lymphedema and tumor metastasis. These studies elucidate the basic mechanisms of embryonic lymphangiogenesis and add to the knowledge of lymphedema and tumor metastasis treatments by giving novel insights into how lymphatic vessel growth could be induced (in lymphedema) or inhibited (in tumor metastasis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Women with a history of pre-eclampsia have an increased risk of cardiovascular disease in later life. The mechanisms which mediate this heightened risk are poorly understood; it was long believed that pre-eclampsia was a separate disease without any connection to other pathologies. The present study was undertaken to investigate the cardiovascular risk milieu, vascular dilatory function and cardiovascular risk factors, in women with pre-eclampsia, 5 6 years after index pregnancy. The aim was to understand better the cardiovascular risks associated with pre-eclampsia and add tools to the evaluation of cardiovascular risk in women. --- The study involved 30 women with previous severe pre-eclampsia and 21 controls. The 2-day study protocol included venous occlusion plethysmography and pulse wave analysis for assessment of vascular dilatory function and central pulse wave reflection, respectively, office and ambulatory blood pressure measurements, assessment of insulin sensitivity, using a minimal model technique, and tests regarding renal function, lipid metabolism, sympathetic activity and inflammation. Vasodilatory function was impaired in women with a history of pre-eclampsia; this was seen in both endothelium-dependent and endothelium-independent vasodilatation. Proteinuria during pre-eclampsia did not predict changes in vasodilatation, and renal function was similar in the two groups. Insulin sensitivity was related to vasodilatation and features of metabolic syndrome, but only in the patient group, despite similar insulin sensitivity in the control group. Arterial pressure was higher in the patient group than in the controls and correlated with endothelin-1 levels in the patient group, whilst the overall difference between the groups was diminished in 24 hour arterial pressure measurements. Additionally, women with previous pre-eclampsia were characterized by increased sympathetic activity. Impaired vasodilatory function at the vascular smooth muscle level seems to characterize clinically healthy women with a history of pre-eclampsia. These vascular changes and the features of metabolic syndrome may be related to the increased risk of cardiovascular disease. Furthermore, increased blood pressure in combination with enhanced sympathetic activity may be additive as regards this risk. These women should be informed about their potential cardiovascular risk profile and the possibilities to minimize it via their own actions. Medical cardiovascular risk assessment in women should include obstetric history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute heart failure syndrome represents a prominent and growing health problem all around the world. Ideally, medical treatment for patients admitted to hospital because of this syndrome, in addition to alleviating the acute symptoms, should also prevent myocardial damage, modulate neurohumoral and inflammatory activation, and preserve or even improve renal function. Levosimendan is a cardiac enhancer having both inotropic and vasodilatory effects. It is approved for the short-term treatment of acutely decompensated chronic heart failure, but it has been shown to have beneficial clinical effects also in ischemic heart disease and septic shock as well as in perioperative cardiac support. In the present study, the mechanisms of action of levosimendan were studied in isolated guinea-pig heart preparations: Langendorff-perfused heart, papillary muscle and permeabilized cardiomyocytes as well as in purified phosphodiesterase isoenzyme preparations. Levosimendan was shown to be a potent inotropic agent in isolated Langendorff-perfused heart and right ventricle papillary muscle. In permeabilized cardiomyocytes, it was demonstrated to be a potent calcium sensitizer in contrast to its enantiomer, dextrosimendan. It was additionally shown to be a very selective phosphodiesterase (PDE) type-3 inhibitor, the selectivity factor for PDE3 over PDE4 being 10000 for levosimendan. Irrespective of this very selective PDE3 inhibitory property in purified enzyme preparations, the inotropic effect of levosimendan was demonstrated to be mediated mainly through calcium sensitization in the isolated heart as well as the papillary muscle preparations at clinically relevant concentrations. In the isolated Lagendorff-perfused heart, glibenclamide antagonized the levosimendan-induced increase in coronary flow (CF). Therefore, the main vasodilatory mechanism in coronary veins is believed to be the opening of the ATP-sensitive potassium (KATP) channels. In the paced hearts, CF did not increase in parallel with oxygen consumption (MVO2), thus indicating that levosimendan had a direct vasodilatory effect on coronary veins. The pharmacology of levosimendan was clearly different from that of milrinone, which induced an increase in CF in parallel with MVO2. In conclusion, levosimendan was demonstrated to increase cardiac contractility by binding to cardiac troponin C and sensitizing the myofilament contractile proteins to calcium, and further to induce coronary vasodilatation by opening KATP channels in vascular smooth muscle. In addition, the efficiency of the cardiac contraction was shown to be more advantageous when the heart was perfused with levosimendan in comparison to milrinone perfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basement membranes are specialized sheets of extracellular matrix found in contact with epithelia, endothelia, and certain isolated cells. They support tissue architecture and regulate cell behaviour. Laminins are among the main constituents of basement membranes. Due to differences between laminin isoforms, laminins confer structural and functional diversity to basement membranes. The first aim of this study was to gain insights into the potential functions of the then least characterized laminins, alpha4 chain laminins, by evaluating their distribution in human tissues. We thus created a monoclonal antibody specific for laminin alpha4 chain. By immunohistochemistry, alpha4 chain laminins were primarily localized to basement membranes of blood vessel endothelia, skeletal, heart, and smooth muscle cells, nerves, and adipocytes. In addition, alpha4 chain laminins were found in the region of certain epithelial basement membranes in the epidermis, salivary gland, pancreas, esophagus, stomach, intestine, and kidney. Because of the consistent presence of alpha4 chain laminins in endothelial basement membranes of blood vessels, we evaluated the potential roles of endothelial laminins in blood vessels, lymphatic vessels, and carcinomas. Human endothelial cells produced alpha4 and alpha5 chain laminins. In quantitative and morphological adhesion assays, human endothelial cells barely adhered to alpha4 chain-containing laminin-411. The weak interaction of endothelial cells with laminin-411 appeared to be mediated by alpha6beta1 integrin. The alpha5 chain-containing laminin-511 promoted endothelial cell adhesion better than laminin-411, but it did not promote the formation of cell-extracellular matrix adhesion complexes. The adhesion of endothelial cells to laminin-511 appeared to be mediated by Lutheran glycoprotein together with beta1 and alphavbeta3 integrins. The results suggest that these laminins may induce a migratory phenotype in endothelial cells. In lymphatic capillaries, endothelial basement membranes showed immunoreactivity for laminin alpha4, beta1, beta2, and gamma1 chains, type IV and XVIII collagens, and nidogen-1. Considering the assumed inability of alpha4 chain laminins to polymerize and to promote basement membrane assembly, the findings may in part explain the incomplete basement membrane formation in these vessels. Lymphatic capillaries of ovarian carcinomas showed immunoreactivity also for laminin alpha5 chain and its receptor Lutheran glycoprotein, emphasizing a difference between normal and ovarian carcinoma lymphatic capillaries. In renal cell carcinomas, immunoreactivity for laminin alpha4 chain was found in stroma and basement membranes of blood vessels. In most tumours, immunoreactivity for laminin alpha4 chain was also observed in the basement membrane region of tumour cell islets. Renal carcinoma cells produced alpha4 chain laminins. Laminin-411 did not promote adhesion of renal carcinoma cells, but inhibited their adhesion to fibronectin. Renal carcinoma cells migrated more on laminin-411 than on fibronectin. The results suggest that alpha4 chain laminins have a counteradhesive function, and may thus have a role in detachment and invasion of renal carcinoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kasvainten, ajatellaan syntyvän yksittäisen solun perimän mutaatioista, jonka seurauksena tuon solun kasvu häiriintyy. Ruoansulatuskanavan polyyppien syntyä käytetään usein mallina siitä, miten nämä epiteelisoluun kerääntyvät mutaatiot aiheuttavat asteittain pahenevan kasvuhäiriön. Peutz–Jeghersin oireyhtymä (PJS) on perinnöllinen polypoosisyndrooma, jossa oireita aiheuttavat erityisesti maha-suolikanavan hamartomatoottiset polyypit. Noin puolella PJS potilaista havaitaan mutaatioita LKB1 kasvunrajoite geenissä. Hiirille joilta toinen Lkb1 alleeli on poistettu (Lkb1+/-) kehittyy PJS-tyypin maha-suolikanavan polyyppeja, joissa on epiteelin liikakasvun lisäksi merkittävä sileälihaskomponentti, aivan kuten PJS polyypeissa. Kuten myös muissa ruoansulatuskanavan polypooseissa, sekä PJS että hiirten polyypeissa Cyclo-oxygenaasi-2:n (COX-2) määrä on usein kohonnut. PJS-polyyppien kehittymisen molekulaarinen mekanismi on kuitenkin selvittämättä. Koska vain osa PJS potilaista kantaa LKB1 mutaatioita, mutaatiot jossakin toisessa lokuksessa saattaisivat selittää osan PJS tapauksista. Jotta PJS:n geneettinen tausta selviäisi, seulottiin kolmen LKB1:n kanssa interaktoivan proteiinin (BRG1, STRADα ja MO25α) geenit PJS potilaista joilla ei ole havaittu LKB1 mutaatioita. Yhdessäkään tutkituista geeneistä ei havaittu tautia aiheuttavia mutaatioita. Näiden kolmen geenin pois sulkeminen, ja uusien menetelmien ansiosta kasvanut havaittujen Lkb1 mutaatioden määrä viittaavat LKB1:n olevan useimpien PJS tapausten taustalla. COX-2:n estäjien käyttö on tehokkaasti vähentänyt polyyppien määrää familiaarisessa adenomatoottisessa polypoosissa. Tästä johtuen COX-2:n eston tehokkuutta tutkittiin PJS polypoosissa. PJS-tyypin polypoosin havaittin pienenevän merkittävästi Lkb1+/- hiirissä, joilta oli lisäksi poistettu toinen tai molemmat COX-2:n alleeleista. Lisäksi farmakologinen COX-2:n esto Celecoxib:lla vähensi polypoosia tehokkaasti. Näin ollen COX-2:n eston tehokkuutta tutkittiin seuraavaksi PJS potilaissa. Kuuden kuukauden Celecoxib hoidon jälkeen polypoosin havaittiin vähentyneen merkittävästi osalla potilaista (2/6). Nämä tulokset osoittavat COX-2:n roolin PJS-polyyppien kehityksessä, ja viittaavat COX-2:n eston vähentävän polypoosia. Kasvunrajoitegeenin klassisen määritelmän mukaan kasvaimen kehitys vaatii perinnöllisen mutaation lisäksi geenin toisenkin alleelin mutaation, mutta PJS-polyyppien häiriintyneestä epiteelistä ei kuitenkaan systemaattisesti löydy toista LKB1:n mutaatiota. Havainto johti tutkimukseen, jossa selvitettiin voisiko LKB1:n kasvun rajoitus välittyäkin epäsuorasti tukikudokseksi ajatelluista sileälihassoluista. Tätä tutkittiin kehittämällä poistogeeninen hiirimalli jossa Lkb1 on mutatoitunut vain sileälihassoluissa. Näille hiirille kehittyi polyyppeja, jotka ovat kaikin tavoin PJS-polyyppien kaltaisia. Lkb1:n menettäneiden solujen havaittiin tuottavan vähemmän transformoivaa kasvutekijä beetaa (TGFß), joka aiheutti solujen välisen viestinnän heikentymisen ja mahdollisesti viereisten epiteelisolujen liikakasvun. Vastaava häiriö havaittiin myös PJS-potilaiden polyypeissa, mikä viittaa siihen, että potilaillakin sileälihassolujen häiriö on polyyppien taustalla. Havainto suuntaa täten hoitokohteiden etsintää ja osoittaa että LKB1 toimii kasvunrajoittajana epätyypillisellä tavalla pitäen naapurisolujen kasvun kurissa.