120 resultados para Unreliable Production Lines
em Helda - Digital Repository of University of Helsinki
Resumo:
Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.
Resumo:
Reciprocal development of the object and subject of learning. The renewal of the learning practices of front-line communities in a telecommunications company as part of the techno-economical paradigm change. Current changes in production have been seen as an indication of a shift from the techno-economical paradigm of a mass-production era to a new paradigm of the information and communication technological era. The rise of knowledge management in the late 1990s can be seen as one aspect of this paradigm shift, as knowledge creation and customer responsiveness were recognized as the prime factors in business competition. However, paradoxical conceptions concerning learning and agency have been presented in the discussion of knowledge management. One prevalent notion in the literature is that learning is based on individuals’ voluntary actions and this has now become incompatible with the growing interest in knowledge-management systems. Furthermore, commonly held view of learning as a general process that is independent of the object of learning contradicts the observation that the current need for new knowledge and new competences are caused by ongoing techno-economic changes. Even though the current view acknowledges that individuals and communities have key roles in knowledge creation, this conception defies the idea of the individuals’ and communities’ agency in developing the practices through which they learn. This research therefore presents a new theoretical interpretation of learning and agency based on Cultural-Historical Activity Theory. This approach overcomes the paradoxes in knowledge-management theory and offers means for understanding and analyzing changes in the ways of learning within work communities. This research is also an evaluation of the Competence-Laboratory method which was developed as part of the study as a special application of Developmental Work Research methodology. The research data comprises the videotaped competence-laboratory processes of four front-line work communities in a telecommunications company. The findings reported in the five articles included in this thesis are based on the analyses of this data. The new theoretical interpretation offered here is based on the assessment that the findings reported in the articles represent one of the front lines of the ongoing historical transformation of work-related learning since the research site represents one of the key industries of the new “knowledge society”. The research can be characterized as elaboration of a hypothesis concerning the development of work related learning. According to the new theoretical interpretation, the object of activity is also the object of distributed learning in work communities. The historical socialization of production has increased the number of actors involved in an activity, which has also increased the number of mutual interdependencies as well as the need for communication. Learning practices and organizational systems of learning are historically developed forms of distributed learning mediated by specific forms of division of labor, specific tools, and specific rules. However, the learning practices of the mass production era become increasingly inadequate to accommodate the conditions in the new economy. This was manifested in the front-line work communities in the research site as an aggravating contradiction between the new objects of learning and the prevailing learning practices. The constituent element of this new theoretical interpretation is the idea of a work community’s learning as part of its collaborative mastery of the developing business activity. The development of the business activity is at the same time a practical and an epistemic object for the community. This kind of changing object cannot be mastered by using learning practices designed for the stable conditions of mass production, because learning has to change along the changes in business. According to the model introduced in this thesis, the transformation of learning proceeds through specific stages: predefined learning tasks are first transformed into learning through re-conceptualizing the object of the activity and of the joint learning and then, as the new object becomes stabilized, into the creation of new kinds of learning practices to master the re-defined object of the activity. This transformation of the form of learning is realized through a stepwise expansion of the work community’s agency. To summarize, the conceptual model developed in this study sets the tool-mediated co-development of the subject and the object of learning as the theoretical starting point for developing new, second-generation knowledge management methods. Key words: knowledge management, learning practice, organizational system of learning, agency
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.
Resumo:
Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.
Resumo:
In the European Union, conventional cages for laying hens will be faded out at the beginning of 2012. The rationale behind this is a public concern over animal welfare in egg production. As alternatives to conventional cages, the European Union Council Directive 1999/74/EC allows non-cage systems and enriched (furnished) cages. Layer performance, behavior, and welfare in differently sized furnished cages have been investigated quite widely during recent decades, but nutrition of hens in this production system has received less attention. This thesis aims to compare production and feed intake of laying hens in furnished and conventional cages and to study the effects of different dietary treatments in these production systems, thus contributing to the general knowledge of furnished cages as an egg production system. A furnished cage model for 8 hens was compared with a 3-hen conventional cage. Three consecutive experiments each studied one aspect of layer diet: The first experiment investigated the effects of dietary protein/energy ratio, the second dietary energy levels, and the third the effects of extra limestone supplementation. In addition, a fourth experiment evaluated the effects of perches on feed consumption and behavior of hens in furnished cages. The dietary treatments in experiments 1 3 generally had similar effects in the two cage types. Thus, there was no evidence supporting a change in nutrient requirements for laying hens when conventional cages are replaced with small-group furnished cages. Moreover, the results from nutritional experiments conducted in conventional cages can be applied to small-group furnished cage systems. These results support the view that production performance comparable with conventional cages can be achieved in furnished cages. All of the advantages of cages for bird welfare are sustained in the small-group furnished cages used here. In addition, frequent use of perches and nests implies a wider behavioral repertoire in furnished cages than in conventional cages. The increase observed in bone ash content may improve bird welfare in furnished cages. The presence of perches diminished feed consumption during the prelaying period and enhanced the feed conversion ratio during the early laying period in furnished cages. However, as the presence or absence of perches in furnished cages had no significant effect on feed consumption after the prelaying period, the lower feed consumption observed in furnished cages than in conventional cages could be attributed to other factors, such as the presence of wood shavings or a nest box. The wider feed trough space per hen in conventional than in furnished cages may partly explain the higher feed consumption observed in conventional cages.
Resumo:
Naked oat (Avena sativa f.sp. nuda L.) is the highest quality cereal in northern growing conditions. However the cultivation area of naked oat is remarkably small. Major challenges for naked oat production are to observe its nakedness. The caryopsis of naked oat is sensitive to mechanical damage at harvest, especially at high grain moisture content. The greater the grain moisture content of naked oat at harvest, the more loses of germination capacity was caused by threshing. For producing high quality naked oat seed, it is recommended that harvesting be done at as low grain moisture content as possible. However, if this is not possible, better germination can be ensure with gentle harvest by reducing the cylinder speed. In spite of conventional oat s excellent fat and amino acid composition in animal feed use, as far as nutritional value is concerned, the total energy yield of oat is weaker than other cereals because of the hulls. Also with naked oat the dehulling is not complete, while hull content on different cultivars mostly varied between one to six percent. In addition to genotype, environmental conditions markedly control the expression of nakedness. Thresher settings had only limited effects on hull content. The function of hulls is to protect the groat, but this was confirmed only for Finnish, small grain, cultivar Lisbeth. The oat kernel is generally covered with fine silky hairs termed trichomes. The trichomes of naked oat are partly lost during threshing and handling of grains. Trichomes can cause itchiness in those handling the grains and also accumulate and form fine dust and can block-up machinery. The cultivars differed considerably in pubescence. Some thresher settings, including increased cylinder speed, slightly increased grain polishing such that grains had some areas completely free of trichomes. Adjusting thresher settings was generally not an efficient means of solving the problems associated with naked oat trichomes. The main differences in cultivation costs between naked and conventional oat lie in the amount of seeds required and the drying costs. The main differences affecting the economic result lie in market prices, yield level and feed value. The results indicate that naked oat is financially more profitable than conventional oat, when the crop is sold at a specific price at all yield levels and when the crop is used as feed at highest yield level. At lower yield levels, conventional oat is, in spite of its lower feed value, the more profitable option for feed use. Dehulled oat did not achieve the same economic result as naked oat, as the cost of dehulling, including the hull waste, was considerable. According to this study naked oat can be cultivated successfully under northern conditions, when taking into consideration the soft, naked grain through cultivation chain.
Resumo:
The main objective of this thesis was to elucidate the effects of regrowth grass silage and red clover silage on nutrient supply and milk production of dairy cows as compared with primary growth grass silages. In the first experiment (publication I), two primary growth and four regrowth grass silages were harvested at two stages of growth. These six silages were fed to 24 lactating dairy cows with two levels of concentrate allowance. Silage intake and energy corrected milk yield (ECM) responses, and the range in these response variables between the diets, were smaller when regrowth silages rather than primary growth silages were fed. Milk production of dairy cows reflected the intake of metabolizable energy (ME), and no differences in the ME utilization were found between the diets based on silages harvested from primary growth and regrowth. The ECM response to increased concentrate allowance was, on average, greater when regrowth rather than primary growth silages were fed. In the second experiment (publication II), two silages from primary growth and two from regrowth used in I were fed to rumen cannulated lactating dairy cows. Cows consumed less feed dry matter (DM), energy and protein, and produced less milk, when fed diets based on regrowth silages rather than primary growth silages. Lower milk production responses of regrowth grass silage diets were mainly due to the lower silage DM intake, and could not be accounted for by differences in energy or protein utilization. Regrowth grass silage intake was not limited due to neutral detergent fibre (NDF) digestion or rumen fill or passage kinetics. However, lower intake may be at least partly attributable to plant diseases such as leaf spot infections, dead deteriorating material or abundance of weeds, which are all higher in regrowth compared with primary growth, and increase with advancing regrowth. In the third experiment (publications III and IV), red clover silages and grass silages harvested at two stages of growth, and a mixed diet of red clover and grass silages, were fed to five rumen cannulated lactating dairy cows. In spite of the lower average ME intake for red clover diets, the ECM production remained unchanged suggesting more efficient utilisation of ME for red clover diets compared with grass diets. Intake of N, and omasal canal flows of total non-ammonia N (NAN), microbial and non-microbial NAN were higher for red clover than for grass silage diets, but were not affected by forage maturity. Delaying the harvest tended to decrease DM intake of grass silage and increase that of red clover silage. The digestion rate of potentially digestible NDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased the digestion rate for grass but increased it for red clover silage diets. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill but was most likely related to the nutritionally suboptimal diet composition because inclusion of moderate quality grass silage in mixed diet increased silage DM intake. Despite the higher total amino acid supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were possibly compromised by an inadequate supply of methionine as evidenced by lower methionine concentration in the amino acid profile of omasal digesta and plasma. Increasing the maturity of ensiled red clover does not seem to affect silage DM intake as consistently as that of grasses. The efficiency of N utilization for milk protein synthesis was lower for red clover diets than for grass diets. It was negatively related to diet crude protein concentration similarly to grass silage diets.
Resumo:
Vasikoiden kasvatus yksilökarsinoissa, imemismahdollisuuden puute maitojuoton yhteydessä sekä pienet juomamäärät ovat tekijöitä, jotka mahdollisesti voivat vähentää vasikoiden hyvinvointia. Vasikoiden kasvatukseen etsitäänkin uusia tapoja, joissa eläinten käyttäytymistarpeet ja hyvinvointi otetaan entistä paremmin huomioon. Tässä väitöskirjassa vasikoiden kasvatusta on tarkasteltu sekä tuotannon että vasikoiden käyttäytymisen ja hyvinvoinnin kannalta. Väitöskirja koostuu kolmesta kokeesta, joista ensimmäisessä tutkittiin vasikoiden kasvatusta ryhmäkarsinoissa ulkona tai sisällä ja vasikoiden kasvatusta sisällä ryhmä- tai yksilökarsinoissa. Toisessa kokeessa vasikoiden annettiin imeä emiään rajoitetusti lypsyn jälkeen viiden tai kahdeksan viikon ajan ja kolmannessa selvitettiin vasikoiden veden juontia, kun vasikat saivat juomarehua vapaasti. Lisäksi kokeiden yhdistetystä aineistosta analysoitiin eri rehujen syöntimäärien suhdetta sekä rehujen vaikutusta kasvuun ennen ja jälkeen maidosta vieroituksen. Tutkimuksessa todettiin, että vasikoita voi ryhmässä kasvattaa kylmissä ja vaihtelevissa sääoloissa ulkona, kunhan ne hoidetaan ja ruokitaan erittäin huolellisesti. Kylmällä ilmalla vasikat saattavat kuitenkin syödä väkirehua vähemmän varsinkin, jos ruokailupaikka on ulkona ja makuualue sisällä. Ryhmässä kasvaneet vasikat aloittivat sekä kuivien rehujen syönnin että märehtimisen nuorempina kuin yksilökarsinassa kasvaneet. Ryhmissä esiintyvää käyttäytymisongelmaa, toisten vasikoiden imemistä, voidaan vähentää hoito- ja ruokintamenetelmillä. Annettaessa vasikoiden imeä emiään rajoitetusti lypsyn jälkeen vasikat oppivat imemään emiään hyvin nopeasti. Lypsytyö vaikeutui muutamien lehmien kohdalla, sillä ne pidättivät maitoa lypsettäessä. Saadessaan imeä rajoitetusti vasikat imivät suurehkoja maitomääriä kerrallaan. Vieroittaminen suurilta maitomääriltä viiden viikon iässä oli kuitenkin liian aikaista, koska vasikat eivät vielä syöneet riittävästi kuivia rehuja. Vieroitus emästä niin viiden kuin kahdeksankin viikon iässä aiheutti vasikoissa levottomuutta ja ääntelyn lisääntymistä. Saadessaan hapatettua juomarehua vapaasti vasikat joivat keskimäärin vain vähän vettä, olipa vesilähteenä avoin ämpäri tai vesinippa. Vasikoiden välillä oli suurta vaihtelua veden juontimäärissä. Viikkoa ennen maidosta vieroitusta vasikat joivat 0-3 l vettä päivässä. Vasikat joivat nipasta kerrallaan vähemmän vettä kuin ämpäristä, ja käyttivät enemmän aikaa päivässä veden juomiseen kuin vesiämpäristä juoneet vasikat. Suurin osa vasikoista joi vettä juomanipoista erikoisella tavalla esimerkiksi painamalla nippaa otsalla ja juomalla tippuvaa vettä. Vesinipat voivat olla siis vasikoille joko vaikeita tai epämukavia käyttää. Vasikoiden juoman maitomäärän lisääntyessä kasvu lisääntyy selvästi. Runsas maidon juominen vähentää kuitenkin kuivien rehujen syöntiä ja vieroitusvaiheessa kasvu voi hidastua. Vasikat olisikin tärkeää vieroittaa vähitellen, ettei muutoksia kasvuun tulisi. Syönti- ja kasvutulokset eivät aina anna oikeaa kuvaa kasvatusmenetelmien eroista eläinten hyvinvoinnin kannalta. Käyttäytyminen on herkkä hyvinvoinnin mittari ja se tulisikin aina huomioida eri kasvatusmenetelmiä arvioitaessa. .