32 resultados para Transfer Raft Polymerization
em Helda - Digital Repository of University of Helsinki
Resumo:
Kontrolloidut radikaalipolymerointimenetelmät, kuten RAFT-polymerointi, ovat moderni tapa valmistaa polymeerejä säädellysti. RAFT-polymeroinnilla polymeerien ketjunpituutta, moolimassajakaumaa, mikrorakennetta (taktisuus, järjestys), koostumusta ja funktionaalisuutta kyetään hallitsemaan. Siten menetelmällä voidaan valmistaa uudenlaisia polymeeriarkkitektuureja, kuten blokki- ja tähtipolymeerejä, sekä hybridimateriaaleja ja biokonjugaatteja. Polymeeristen rakennuspalikoiden itsejärjestyminen, missä huolellisesti syntetisoidut polymeerit järjestyvät halutulla tavalla nanoskaalassa, on suosittu tutkimuskohde materiaalitieteessä. On huomattava, että blokkipolymeerien itsejärjestyminen on vielä suhteellisen nuori tutkimusaihe. Tämän hetkiset polymeeriset nanomateriaalit ovat suhteellisen yksinkertaisia luonnon luomuksiin verrattuina, tarjoten jatkuvasti uusia mahdollisuuksia seuraavan sukupolven polymeereille. Tässä työssä RAFT-polymeroinnilla syntetisoitiin amfifiilisiä di- ja triblokkikopolymeerejä sekä tutkittiin niiden järjestymistä nanorakenteiksi. Kaikissa blokkikopolymeereissä käytettiin lämpöherkkää poly(N-isopropyyliakryyliamidia). Siten polymeerit ja tutkitut materiaalit reagoivat lämpötilanmuutokseen ympäristössä eli ovat ns. ympäristöherkkiä. Työssä tutkittiin taktisuuden kontrollointia N-isopropyyliakryyliamidin RAFT-polymeroinnissa. Polymeerin taktisuutta sekä ketjunpituutta ja blokkijärjestystä säätämällä voitiin hallita polymeerin itsejärjestymistä vesiliuoksessa. Amfifiiliset polymeerit järjestyivät laimeissa vesiliuoksissa erilaisiksi misellirakenteiksi, muodostaen ns. mikrosäiliöitä. Tällaisilla polymeereillä odotetaan olevan sovelluksia esim. lääkeainevapautuksessa. Amfifiilejä käytetään myös esimerkiksi apuaineina pinnoitteissa ja kosmetiikassa. Kiinteässä tilassa tutkitut triblokkikopolymeerit muodostivat teoreettisesti ennustettuja morfologioita. Lämpöherkän materiaalin hydrogeelit toimivat suodatinmembraanina nanokokoluokassa. RAFT-polymeroinnilla syntetisoituja polymeereja voidaan sellaisenaan käyttää kultananopartikkeleiden päällystämiseen. Kultananopartikkelit ovat erittäin kiinostavia mm. niiden stabiilisuuden ja ainutlaatuisten pintaominaisuuksien vuoksi. Kun amfifiilisiä polymeerejä kiinnitettiin kultapartikkelin pinnalle, sen liuos- ja optisia ominaisuuksia voitiin säädellä pH:n ja lämpötilan avulla. Tällaisilla kultananopartikkeleilla on sovelluksia mm. diagnostiikassa, sensoreina ja solukuvauksessa.
Resumo:
Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.
Resumo:
Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.
Resumo:
The Uppsala school of Axel Hägerström can be said to have been the last genuinely Swedish philosophical movement. On the other hand, the Swedish analytic tradition is often said to have its roots in Hägerström s thought. This work examines the transformation from Uppsala philosophy to analytic philosophy from an actor-based historical perspective. The aim is to describe how a group of younger scholars (Ingemar Hedenius, Konrad Marc-Wogau, Anders Wedberg, Alf Ross, Herbert Tingsten, Gunnar Myrdal) colonised the legacy of Hägerström and Uppsala philosophy, and faced the challenges they met in trying to reconcile this legacy with the changing philosophical and political currents of the 1930s and 40s. Following Quentin Skinner, the texts are analysed as moves or speech acts in a particular historical context. The thesis consists of five previously published case studies and an introduction. The first study describes how the image of Hägerström as the father of the Swedish analytic tradition was created by a particular faction of younger Uppsala philosophers who (re-) presented the Hägerströmian philosophy as a parallel movement to logical empiricism. The second study examines the confrontations between Uppsala philosophy and logical empiricism in both the editorial board and in the pages of Sweden s leading philosophical journal Theoria. The third study focuses on how the younger generation redescribed Hägerströmian legal philosophical ideas (Scandinavian Legal Realism), while the fourth study discusses how they responded to the accusations of a connection between Hägerström s value nihilistic theory and totalitarianism. Finally, the fifth study examines how the Swedish social scientist and Social Democratic intellectual Gunnar Myrdal tried to reconcile value nihilism with a strong political programme for social reform. The contribution of this thesis to the field consists mainly in a re-evaluation of the role of Uppsala philosophy in the history of Swedish philosophy. From this perspective the Uppsala School was less a collection of certain definite philosophical ideas than an intellectual legacy that was the subject of fierce struggles. Its theories and ideas were redescribed in various ways by individual actors with different philosophical and political intentions.
Resumo:
This study examined religious home education in educational, psychological, and sociological context. Growing up within a religious denomination is a process of learning the rules, norms, opinions, and attitudes, which serve to make the individual an active member of the group. It is a process of transferring the cultural inheritance between generations. Sabbathkeeping can be regarded as a strong indicator of the Seventh-day Adventist value system, which is also why I have concentrated on this specific issue in my study. The purpose of the study was to find out, how the Sabbath is transferred from parents to children among Finnish Adventists. It was also examined how parents could make the day of rest positively exceptional for children, and how the parental authoritativeness affects the process of transference. According to Bull & Lockhart s (1989) theory, the amount of Adventist generations in family history influences the transfer of religious tradition. This study aimed to find out whether or not this theory would apply to the present-day Finland. The nature of religious development among Adventist young people was also one of the interests of the research. The methods used in the study were in-depth interviews (n = 10) and a survey (n = 106). The majority of the interviewees was young adults (age 15-30) grown up in Adventist families. The interviews were taped and transcribed for the study, and survey answers were analysed with SPSS-data analysis program. The amount of survey questionnaires evaluated was 106, whole population of 15-30 year-old Finnish Adventists being about one thousand. Democratic relationship between parents and children, parents' example, encouragement to own thinking, and positive experiences of Sabbath and the whole religion, including the social dimension of the Adventism, seem to be some of the most significant factors in transference of religious tradition. Both too severe and too permissive education were considered to lead to similar results: unsuccessful transfer of values, or even rebellion and adopting a totally opposite way of life than that of the parents. In this study the amount of Adventist generations in family history does not correlate significantly with the end results of value transference. Keywords: Sabbath, intergenerational, value transference, religious home education Avainsanat: sapatti, arvojen siirtyminen vanhemmilta lapsille, uskonnollinen kotikasvatus
Resumo:
Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
The current study of Scandinavian multinational corporate subsidiaries in the rapidly growing Eastern European market, due to their particular organizational structure, attempts to gain some new insights into processes and potential benefits of knowledge and technology transfer. This study explores how to succeed in knowledge transfer and to become more competitive, driven by the need to improve transfer of systematic knowledge for the manufacture of product and service provisions in newly entered market. The scope of current research is exactly limited to multinational corporations, which are defined as enterprises comprising entities in two or more countries, regardless of legal forms and field of activity of those entities, and which operate under a system of decision-making permitting coherent policies and a common strategy through one or more decision-making centers. The entities are linked, by ownership, and able to exercise influence over the activities of the others; and, in particular, to share the knowledge, resources, and responsibilities with others. The research question is "How and to which extent can knowledge-transfer influence a company's technological competence and economic competitiveness?" and try to find out what particular forces and factors affect the development of subsidiary competencies; what factors influence the corporate integration and use of the subsidiary's competencies; and what may increase competitiveness of MNC pursuing leading position in entered market. The empirical part of the research was based on qualitative analyses of twenty interviews conducted among employees in Scandinavian MNC subsidiary units situated in Ukraine, using structured sequence of questions with open-ended answers. The data was investigated by comparison case analyses to literature framework. Findings indicate that a technological competence developed in one subsidiary will lead to an integration of that competence with other corporate units within the MNC. Success increasingly depends upon people's learning. The local economic area is crucial for understanding competition and industrial performance, as there seems to be a clear link between the performance of subsidiaries and the conditions prevailing in their environment. The linkage between competitive advantage and company's success is mutually dependent. Observation suggests that companies can be characterized as clusters of complementary activities such as R&D, administration, marketing, manufacturing and distribution. Study identifies barriers and obstacles in technology and knowledge transfer that is relevant for the subsidiaries' competence development. The accumulated experience can be implemented in new entered market with simple procedures, and at a low cost under specific circumstances, by cloning. The main goal is focused to support company prosperity, making more profits and sustaining an increased market share by improved product quality and/or reduced production cost of the subsidiaries through cloning approach. Keywords: multinational corporation; technology transfer; knowledge transfer; subsidiary competence; barriers and obstacles; competitive advantage; Eastern European market
Resumo:
The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.
Resumo:
Polyethylene is the most widely used synthetic polymer in the world. Most polyethylene is made with Ziegler-Natta catalysts. Polyethylenes for special applications are made with metallocenes, which are nowadays heavily patented. It is laborious therefore, to develop new metallocenes. The aim of this work was to investigate the feasibility of replacing the cyclopentadienyl ligands of metallocenes by aminopyridinato ligands without losing the good properties of the metallocenes, such as high activity and formation of linear polymer. The subject was approached by studying what kind of catalysts the metallocenes are and how they catalyze polyethylene. The polymerization behavior of metallocenes was examined by synthesizing a piperazino substituted indenyl zirconocene catalyst and comparing its polymerization data with that of the indenyl zirconocene catalyst. On the basis of their isolobality, it was thought that aminopyridinato ligands might replace cyclopentadienyl ligands. It was presumed that the polymerization mechanism and the active center in ethylene polymerization would be similar for aminopyridinato and metallocene catalysts. Titanium aminopyridinato complexes were prepared and their structures determined to clarify the relationship between structure of the catalyst precursor and polymerization results. The ethylene polymerization results for titanium 2-phenylaminopyridinato catalysts and titanocene catalysts were compared.
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.