40 resultados para Transfer RNA (tRNA)
em Helda - Digital Repository of University of Helsinki
Resumo:
The Uppsala school of Axel Hägerström can be said to have been the last genuinely Swedish philosophical movement. On the other hand, the Swedish analytic tradition is often said to have its roots in Hägerström s thought. This work examines the transformation from Uppsala philosophy to analytic philosophy from an actor-based historical perspective. The aim is to describe how a group of younger scholars (Ingemar Hedenius, Konrad Marc-Wogau, Anders Wedberg, Alf Ross, Herbert Tingsten, Gunnar Myrdal) colonised the legacy of Hägerström and Uppsala philosophy, and faced the challenges they met in trying to reconcile this legacy with the changing philosophical and political currents of the 1930s and 40s. Following Quentin Skinner, the texts are analysed as moves or speech acts in a particular historical context. The thesis consists of five previously published case studies and an introduction. The first study describes how the image of Hägerström as the father of the Swedish analytic tradition was created by a particular faction of younger Uppsala philosophers who (re-) presented the Hägerströmian philosophy as a parallel movement to logical empiricism. The second study examines the confrontations between Uppsala philosophy and logical empiricism in both the editorial board and in the pages of Sweden s leading philosophical journal Theoria. The third study focuses on how the younger generation redescribed Hägerströmian legal philosophical ideas (Scandinavian Legal Realism), while the fourth study discusses how they responded to the accusations of a connection between Hägerström s value nihilistic theory and totalitarianism. Finally, the fifth study examines how the Swedish social scientist and Social Democratic intellectual Gunnar Myrdal tried to reconcile value nihilism with a strong political programme for social reform. The contribution of this thesis to the field consists mainly in a re-evaluation of the role of Uppsala philosophy in the history of Swedish philosophy. From this perspective the Uppsala School was less a collection of certain definite philosophical ideas than an intellectual legacy that was the subject of fierce struggles. Its theories and ideas were redescribed in various ways by individual actors with different philosophical and political intentions.
Resumo:
This study examined religious home education in educational, psychological, and sociological context. Growing up within a religious denomination is a process of learning the rules, norms, opinions, and attitudes, which serve to make the individual an active member of the group. It is a process of transferring the cultural inheritance between generations. Sabbathkeeping can be regarded as a strong indicator of the Seventh-day Adventist value system, which is also why I have concentrated on this specific issue in my study. The purpose of the study was to find out, how the Sabbath is transferred from parents to children among Finnish Adventists. It was also examined how parents could make the day of rest positively exceptional for children, and how the parental authoritativeness affects the process of transference. According to Bull & Lockhart s (1989) theory, the amount of Adventist generations in family history influences the transfer of religious tradition. This study aimed to find out whether or not this theory would apply to the present-day Finland. The nature of religious development among Adventist young people was also one of the interests of the research. The methods used in the study were in-depth interviews (n = 10) and a survey (n = 106). The majority of the interviewees was young adults (age 15-30) grown up in Adventist families. The interviews were taped and transcribed for the study, and survey answers were analysed with SPSS-data analysis program. The amount of survey questionnaires evaluated was 106, whole population of 15-30 year-old Finnish Adventists being about one thousand. Democratic relationship between parents and children, parents' example, encouragement to own thinking, and positive experiences of Sabbath and the whole religion, including the social dimension of the Adventism, seem to be some of the most significant factors in transference of religious tradition. Both too severe and too permissive education were considered to lead to similar results: unsuccessful transfer of values, or even rebellion and adopting a totally opposite way of life than that of the parents. In this study the amount of Adventist generations in family history does not correlate significantly with the end results of value transference. Keywords: Sabbath, intergenerational, value transference, religious home education Avainsanat: sapatti, arvojen siirtyminen vanhemmilta lapsille, uskonnollinen kotikasvatus
Resumo:
Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.
Resumo:
In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
The studies presented in this thesis aimed to a better understanding of the molecular biology of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus, Closteroviridae) and its role in the development of synergistic viral diseases. The emphasis was on the severe sweet potato virus disease (SPVD) that results from a synergistic interaction of SPCSV and Sweet potato feathery mottle virus (SPFMV, Potyvirus, Potyviridae). SPVD is the most important disease affecting sweetpotato. It is manifested as a significant increase in symptom severity and SPFMV titres. This is accompanied by a dramatic sweetpotato yield reduction. SPCSV titres remain little affected in the diseased plants. Viral synergistic interactions have been associated with the suppression of an adaptive general defence mechanism discovered in plants and known as RNA silencing. In the studies of this thesis two novel proteins (RNase3 and p22) identified in the genome of a Ugandan SPCSV isolate were shown to be involved in suppression of RNA silencing. RNase3 displayed a dsRNA-specific endonuclease activity that enhanced the RNA-silencing suppression activity of p22. Comparative analyses of criniviral genomes revealed variability in the gene content at the 3´end of the genomic RNA1. Molecular analyses of different isolates of SPCSV indicated a marked intraspecific heterogeneity in this region where the p22 and RNase3 genes are located. Isolates of the East African strain of SPCSV from Tanzania and Peru and an isolate from Israel were missing a 767-nt fragment that included the p22 gene. However, regardless of the absence of p22, all SPCSV isolates acted synergistically with SPFMV in co-infected sweetpotato, enhanced SPFMV titres and caused SPVD. These results showed that p22 is dispensable for development of SPVD. The role of RNase3 in SPVD was then studied by generating transgenic plants expressing the RNase3 protein. These plants had increased titres of SPFMV (ca. 600-fold higher in comparison with nontransgenic plants) 2-3 weeks after graft inoculation and displayed the characteristic SPVD symptoms. RNA silencing suppression (RSS) activity of RNase3 was detected in agroinfiltrated leaves of Nicotiana bethamiana. In vitro studies showed that RNase3 was able to cleave small interferring RNAs (siRNA) to products of ~14-nt. The data thus identified RNase3 as a suppressor of RNA silencing able to cleave siRNAs. RNase3 expression alone was sufficient for breaking down resistance to SPFMV in sweetpotato and for the development of SPVD. Similar RNase III-like genes exist in animal viruses which points out a novel and possibly more general mechanism of RSS by viruses. A reproducible method of sweetpotato transformation was used to target RNA silencing against the SPCSV polymerase region (RdRp) with an intron-spliced hairpin construct. Hence, engineered resistance to SPCSV was obtained. Ten out of 20 transgenic events challenged with SPCSV alone showed significantly reduced virus titres. This was however not sufficient to prevent SPVD upon coinfection with SPFMV. Immunity to SPCSV seems to be required to control SPVD and targeting of different SPCSV regions need to be assessed in further studies. Based on the identified key role of RNase3 in SPVD the possibility to design constructs that target this gene might prove more efficient in future studies.
Resumo:
The current study of Scandinavian multinational corporate subsidiaries in the rapidly growing Eastern European market, due to their particular organizational structure, attempts to gain some new insights into processes and potential benefits of knowledge and technology transfer. This study explores how to succeed in knowledge transfer and to become more competitive, driven by the need to improve transfer of systematic knowledge for the manufacture of product and service provisions in newly entered market. The scope of current research is exactly limited to multinational corporations, which are defined as enterprises comprising entities in two or more countries, regardless of legal forms and field of activity of those entities, and which operate under a system of decision-making permitting coherent policies and a common strategy through one or more decision-making centers. The entities are linked, by ownership, and able to exercise influence over the activities of the others; and, in particular, to share the knowledge, resources, and responsibilities with others. The research question is "How and to which extent can knowledge-transfer influence a company's technological competence and economic competitiveness?" and try to find out what particular forces and factors affect the development of subsidiary competencies; what factors influence the corporate integration and use of the subsidiary's competencies; and what may increase competitiveness of MNC pursuing leading position in entered market. The empirical part of the research was based on qualitative analyses of twenty interviews conducted among employees in Scandinavian MNC subsidiary units situated in Ukraine, using structured sequence of questions with open-ended answers. The data was investigated by comparison case analyses to literature framework. Findings indicate that a technological competence developed in one subsidiary will lead to an integration of that competence with other corporate units within the MNC. Success increasingly depends upon people's learning. The local economic area is crucial for understanding competition and industrial performance, as there seems to be a clear link between the performance of subsidiaries and the conditions prevailing in their environment. The linkage between competitive advantage and company's success is mutually dependent. Observation suggests that companies can be characterized as clusters of complementary activities such as R&D, administration, marketing, manufacturing and distribution. Study identifies barriers and obstacles in technology and knowledge transfer that is relevant for the subsidiaries' competence development. The accumulated experience can be implemented in new entered market with simple procedures, and at a low cost under specific circumstances, by cloning. The main goal is focused to support company prosperity, making more profits and sustaining an increased market share by improved product quality and/or reduced production cost of the subsidiaries through cloning approach. Keywords: multinational corporation; technology transfer; knowledge transfer; subsidiary competence; barriers and obstacles; competitive advantage; Eastern European market
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.
Resumo:
Transposable elements, transposons, are discrete DNA segments that are able to move or copy themselves from one locus to another within or between their host genome(s) without a requirement for DNA homology. They are abundant residents in virtually all the genomes studied, for instance, the genomic portion of TEs is approximately 3% in Saccharomyces cerevisiae, 45% in humans, and apparently more than 70% in some plant genomes such as maize and barley. Transposons plays essential role in genome evolution, in lateral transfer of antibiotic resistance genes among bacteria and in life cycle of certain viruses such as HIV-1 and bacteriophage Mu. Despite the diversity of transposable elements they all use a fundamentally similar mechanism called transpositional DNA recombination (transposition) for the movement within and between the genomes of their host organisms. The DNA breakage and joining reactions that underlie their transposition are chemically similar in virtually all known transposition systems. The similarity of the reactions is also reflected in the structure and function of the catalyzing enzymes, transposases and integrases. The transposition reactions take place within the context of a transposition machinery, which can be particularly complex, as in the case of the VLP (virus like particle) machinery of retroelements, which in vivo contains RNA or cDNA and a number of element encoded structural and catalytic proteins. Yet, the minimal core machinery required for transposition comprises a multimer of transposase or integrase proteins and their binding sites at the element DNA ends only. Although the chemistry of DNA transposition is fairly well characterized, the components and function of the transposition machinery have been investigated in detail for only a small group of elements. This work focuses on the identification, characterization, and functional studies of the molecular components of the transposition machineries of BARE-1, Hin-Mu and Mu. For BARE-1 and Hin-Mu transpositional activity has not been shown previously, whereas bacteriophage Mu is a general model of transposition. For BARE-1, which is a retroelement of barley (Hordeum vulgare), the protein and DNA components of the functional VLP machinery were identified from cell extracts. In the case of Hin-Mu, which is a Mu-like prophage in Haemophilus influenzae Rd genome, the components of the core machinery (transposase and its binding sites) were characterized and their functionality was studied by using an in vitro methodology developed for Mu. The function of Mu core machinery was studied for its ability to use various DNA substrates: Hin-Mu end specific DNA substrates and Mu end specific hairpin substrates. The hairpin processing reaction by MuA was characterized in detail. New information was gained of all three machineries. The components or their activity required for functional BARE-1 VLP machinery and retrotransposon life cycle were present in vivo and VLP-like structures could be detected. The Hin-Mu core machinery components were identified and shown to be functional. The components of the Mu and Hin-Mu core machineries were partially interchangeable, reflecting both evolutionary conservation and flexibility within the core machineries. The Mu core machinery displayed surprising flexibility in substrate usage, as it was able to utilize Hin-Mu end specific DNA substrates and to process Mu end DNA hairpin substrates. This flexibility may be evolutionarily and mechanistically important.
Resumo:
Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.
Resumo:
Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.
Resumo:
Plasma phospholipid transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). It mediates the generation of pre-beta-HDL particles, enhances the cholesterol efflux from peripheral cells to pre-beta-HDL, and metabolically maintains the plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. In addition to the antiatherogenic properties, recent findings indicate that PLTP has also proatherogenic characteristics, and that these opposite characteristics of PLTP are dependent on the site of PLTP expression and action. In human plasma, PLTP exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP), which are associated with macromolecular complexes of different size and composition. The aims of this thesis were to isolate the two PLTP forms from human plasma, to characterize the molecular complexes in which the HA- and LA-PLTP reside, and to study the interactions of the PLTP forms with apolipoproteins (apo) and the ability of apolipoproteins to regulate PLTP activity. In addition, we aimed to study the distribution of the two PLTP forms in a Finnish population sample as well as to find possible regulatory factors for PLTP by investigating the influence of lipid and glucose metabolism on the balance between the HA- and LA-PLTP. For these purposes, an enzyme-linked immunosorbent assay (ELISA) capable of determining the serum total PLTP concentration and quantitating the two PLTP forms separately was developed. In this thesis, it was demonstrated that the HA-PLTP isolated from human plasma copurified with apoE, whereas the LA-PLTP formed a complex with apoA-I. The separation of these two PLTP forms was carried out by a dextran sulfate (DxSO4)-CaCl2 precipitation of plasma samples before the mass determination. A similar immunoreactivity of the two PLTP forms in the ELISA could be reached after a partial sample denaturation by SDS. Among normolipidemic Finnish individuals, the mean PLTP mass was 6.6 +/- 1.5 mg/l and the mean PLTP activity 6.6 +/- 1.7 umol/ml/h. Of the serum PLTP concentration, almost 50% represented HA-PLTP. The results indicate that plasma HDL levels could regulate PLTP concentration, while PLTP activity could be regulated by plasma triglyceride-rich very low-density lipoprotein (VLDL) concentration. Furthermore, new evidence is presented that PLTP could also play a role in glucose metabolism. Finally, both PLTP forms were found to interact with apoA-I, apoA-IV, and apoE. In addition, both apoE and apoA-IV, but not apoA-I, were capable of activating the LA-PLTP. These findings suggest that the distribution of the HA- and LA-PLTP in human plasma is subject to dynamic regulation by apolipoproteins.