3 resultados para Titanium mesh

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature part of the thesis mainly reviews the results of the use of titanium catalysts for ethene and caprolactone polymerisation. The behaviour of titanium catalysts bearing phenoxy-imino ligands has been the focus of more detailed investigations in ethene polymerisation. Reasons for the production of multimodal polyethene for a range of catalysts are also given. The experimental part of the thesis is divided into two sections based on the monomers used in the polymerisations: Part A (ethene) and part B (caprolactone). Part A: Titanium(IV) complexes bearing phenoxy-imino ligands are known to possess high ethene polymerisation activities after MAO activation. Depending on the ligand, the activities of the catalysts in polymerisation can vary between 1 and 44000 kgPE/(mol*cat*h*bar). Depending on the polymerisation temperature and the electronic and steric properties of the catalyst ligands, low to high molar mass values and uni- and multimodal polydispersity values can been observed. In order to discover the reasons for these differences, 22 titanium(IV) complexes containing differently substituted phenoxy-imino derivatives as di- and tetradentate ligands were synthesised with high yields and used as homogeneous catalysts in ethene polymerisations. Computational methods were used to predict the geometry of the synthesised complexes and their configuration after activation. Based on the results obtained, the geometry of the catalyst together with the ligand substituents seem to play a major role in defining the catalytic activity. Novel titanium(IV) complexes bearing malonate ligands were also synthesised. Malonates are considered to be suitable ligand pre-cursors since they can be produced by the simple reaction of any primary or secondary alcohol with malonylchloride, and thus they are easily modifiable. After treatment with MAO these complexes had polymerisation activities between 10 and 50 kgPE/(mol*cat*h*bar) and surprisingly low polydispersity values when compared with similar types of catalysts bearing the O?O chelate ligand. Part B: One of the synthesis routes in the preparation of the above mentioned phenoxy-imino titanium dichloride complexes involved the use of Ti(NMe2)4 with a range of salicylaldimine type compounds. On reaction, these two compounds formed an intermediate product selectively and quantitatively which was active in the ring-opening polymerisation of caprolactone. Several mono-anionic alcoholates were also combined with Ti(NMe2)4 in different molar ratios and used as catalysts. Full conversion of the monomer was achieved within 15 minutes with catalysts having a co-ordination number of 4 while after 22 hours full conversion was achieved with catalysts having a co-ordination number of 6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic TiO2 thin films can be highly useful in many environments and applications. They can be used as self-cleaning coatings on top of glass, tiles and steel to reduce the amount of fouling on these surfaces. Photocatalytic TiO2 surfaces have antimicrobial properties making them potentially useful in hospitals, bathrooms and many other places where microbes may cause problems. TiO2 photocatalysts can also be used to clean contaminated water and air. Photocatalytic oxidation and reduction reactions proceed on TiO2 surfaces under irradiation of UV light meaning that sunlight and even normal indoor lighting can be utilized. In order to improve the photocatalytic properties of TiO2 materials even further, various modification methods have been explored. Doping with elements such as nitrogen, sulfur and fluorine, and preparation of different kinds of composites are typical approaches that have been employed. Photocatalytic TiO2 nanotubes and other nanostructures are gaining interest as well. Atomic Layer Deposition (ALD) is a chemical gas phase thin film deposition method with strong roots in Finland. This unique modification of the common Chemical Vapor Deposition (CVD) method is based on alternate supply of precursor vapors to the substrate which forces the film growth reactions to proceed only on the surface in a highly controlled manner. ALD gives easy and accurate film thickness control, excellent large area uniformity and unparalleled conformality on complex shaped substrates. These characteristics have recently led to several breakthroughs in microelectronics, nanotechnology and many other areas. In this work, the utilization of ALD to prepare photocatalytic TiO2 thin films was studied in detail. Undoped as well as nitrogen, sulfur and fluorine doped TiO2 thin films were prepared and thoroughly characterized. ALD prepared undoped TiO2 films were shown to exhibit good photocatalytic activities. Of the studied dopants, sulfur and fluorine were identified as much better choices than nitrogen. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on various complex shaped substrates by exploiting the good qualities of ALD. A clear enhancement in the photocatalytic activity was achieved with these nanostructures. Several new ALD processes were also developed in this work. TiO2 processes based on two new titanium precursors, Ti(OMe)4 and TiF4, were shown to exhibit saturative ALD-type of growth when water was used as the other precursor. In addition, TiS2 thin films were prepared for the first time by ALD using TiCl4 and H2S as precursors. Ti1-xNbxOy and Ti1-xTaxOy transparent conducting oxide films were prepared successfully by ALD and post-deposition annealing. Highly unusual, explosive crystallization behaviour occurred in these mixed oxides which resulted in anatase crystals with lateral dimensions over 1000 times the film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.