22 resultados para Technological physics
em Helda - Digital Repository of University of Helsinki
Quantum Metaphysics : The Role of Human Beings within the Paradigms of Classical and Quantum Physics
Resumo:
This study addresses four issues concerning technological product innovations. First, the nature of the very early phases or "embryonic stages" of technological innovation is addressed. Second, this study analyzes why and by what means people initiate innovation processes outside the technological community and the field of expertise of the established industry. In other words, this study addresses the initiation of innovation that occurs without the expertise of established organizations, such as technology firms, professional societies and research institutes operating in the technological field under consideration. Third, the significance of interorganizational learning processes for technological innovation is dealt with. Fourth, this consideration is supplemented by considering how network collaboration and learning change when formalized product development work and the commercialization of innovation advance. These issues are addressed through the empirical analysis of the following three product innovations: Benecol margarine, the Nordic Mobile Telephone system (NMT) and the ProWellness Diabetes Management System (PDMS). This study utilizes the theoretical insights of cultural-historical activity theory on the development of human activities and learning. Activity-theoretical conceptualizations are used in the critical assessment and advancement of the concept of networks of learning. This concept was originally proposed by the research group of organizational scientist Walter Powell. A network of learning refers to the interorganizational collaboration that pools resources, ideas and know-how without market-based or hierarchical relations. The concept of an activity system is used in defining the nodes of the networks of learning. Network collaboration and learning are analyzed with regard to the shared object of development work. According to this study, enduring dilemmas and tensions in activity explain the participants' motives for carrying out actions that lead to novel product concepts in the early phases of technological innovation. These actions comprise the initiation of development work outside the relevant fields of expertise and collaboration and learning across fields of expertise in the absence of market-based or hierarchical relations. These networks of learning are fragile and impermanent. This study suggests that the significance of networks of learning across fields of expertise becomes more and more crucial for innovation activities.
Resumo:
This study addresses the following question: How to think about ethics in a technological world? The question is treated first thematically by framing central issues in the relationship between ethics and technology. This relationship has three distinct facets: i) technological advance poses new challenges for ethics, ii) traditional ethics may become poorly applicable in a technologically transformed world, and iii) the progress in science and technology has altered the concept of rationality in ways that undermine ethical thinking itself. The thematic treatment is followed by the description and analysis of three approaches to the questions framed. First, Hans Jonas s thinking on the ontology of life and the imperative of responsibility is studied. In Jonas s analysis modern culture is found to be nihilistic because it is unable to understand organic life, to find meaning in reality, and to justify morals. At the root of nihilism Jonas finds dualism, the traditional Western way of seeing consciousness as radically separate from the material world. Jonas attempts to create a metaphysical grounding for an ethic that would take the technologically increased human powers into account and make the responsibility for future generations meaningful and justified. The second approach is Albert Borgmann s philosophy of technology that mainly assesses the ways in which technological development has affected everyday life. Borgmann admits that modern technology has liberated humans from toil, disease, danger, and sickness. Furthermore, liberal democracy, possibilities for self-realization, and many of the freedoms we now enjoy would not be possible on a large scale without technology. Borgmann, however, argues that modern technology in itself does not provide a whole and meaningful life. In fact, technological conditions are often detrimental to the good life. Integrity in life, according to him, is to be sought among things and practices that evade technoscientific objectification and commodification. Larry Hickman s Deweyan philosophy of technology is the third approach under scrutiny. Central in Hickman s thinking is a broad definition of technology that is nearly equal to Deweyan inquiry. Inquiry refers to the reflective and experiential way humans adapt to their environment by modifying their habits and beliefs. In Hickman s work, technology consists of all kinds of activities that through experimentation and/or reflection aim at improving human techniques and habits. Thus, in addition to research and development, many arts and political reforms are technological for Hickman. He argues for recasting such distinctions as fact/value, poiesis/praxis/theoria, and individual/society. Finally, Hickman does not admit a categorical difference between ethics and technology: moral values and norms need to be submitted to experiential inquiry as well as all the other notions. This study mainly argues for an interdisciplinary approach to the ethics of technology. This approach should make use of the potentialities of the research traditions in applied ethics, the philosophy of technology, and the social studies on science and technology and attempt to overcome their limitations. This study also advocates an endorsement of mid-level ethics that concentrate on the practices, institutions, and policies of temporal human life. Mid-level describes the realm between the instantaneous and individualistic micro-level and the universal and global macro level.
Resumo:
The dissertation consists of an introductory chapter and three essays that apply search-matching theory to study the interaction of labor market frictions, technological change and macroeconomic fluctuations. The first essay studies the impact of capital-embodied growth on equilibrium unemployment by extending a vintage capital/search model to incorporate vintage human capital. In addition to the capital obsolescence (or creative destruction) effect that tends to raise unemployment, vintage human capital introduces a skill obsolescence effect of faster growth that has the opposite sign. Faster skill obsolescence reduces the value of unemployment, hence wages and leads to more job creation and less job destruction, unambiguously reducing unemployment. The second essay studies the effect of skill biased technological change on skill mismatch and the allocation of workers and firms in the labor market. By allowing workers to invest in education, we extend a matching model with two-sided heterogeneity to incorporate an endogenous distribution of high and low skill workers. We consider various possibilities for the cost of acquiring skills and show that while unemployment increases in most scenarios, the effect on the distribution of vacancy and worker types varies according to the structure of skill costs. When the model is extended to incorporate endogenous labor market participation, we show that the unemployment rate becomes less informative of the state of the labor market as the participation margin absorbs employment effects. The third essay studies the effects of labor taxes on equilibrium labor market outcomes and macroeconomic dynamics in a New Keynesian model with matching frictions. Three policy instruments are considered: a marginal tax and a tax subsidy to produce tax progression schemes, and a replacement ratio to account for variability in outside options. In equilibrium, the marginal tax rate and replacement ratio dampen economic activity whereas tax subsidies boost the economy. The marginal tax rate and replacement ratio amplify shock responses whereas employment subsidies weaken them. The tax instruments affect the degree to which the wage absorbs shocks. We show that increasing tax progression when taxation is initially progressive is harmful for steady state employment and output, and amplifies the sensitivity of macroeconomic variables to shocks. When taxation is initially proportional, increasing progression is beneficial for output and employment and dampens shock responses.
Resumo:
Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.
Resumo:
This three-phase design research describes the modelling processes for DC-circuit phenomena. The first phase presents an analysis of the development of the DC-circuit historical models in the context of constructing Volta s pile at the turn of the 18th century. The second phase involves the designing of a teaching experiment for comprehensive school third graders. Among other considerations, the design work utilises the results of the first phase and research literature of pupils mental models for DC-circuit phenomena. The third phase of the research was concerned with the realisation of the planned teaching experiment. The aim of this phase was to study the development of the external representations of DC-circuit phenomena in a small group of third graders. The aim of the study has been to search for new ways to guide pupils to learn DC-circuit phenomena while emphasing understanding at the qualitative level. Thus, electricity, which has been perceived as a difficult and abstract subject, could be learnt more comprehensively. Especially, the research of younger pupils learning of electricity concepts has not been of great interest at the international level, although DC-circuit phenomena are also taught in the lower classes of comprehensive schools. The results of this study are important, because there has tended to be more teaching of natural sciences in the lower classes of comprehensive schools, and attempts are being made to develop this trend in Finland. In the theoretical part of the research an Experimental-centred representation approach, which emphasises the role of experimentalism in the development of pupil s representations, is created. According to this approach learning at the qualitative level consists of empirical operations like experimenting, observations, perception, and prequantification of nature phenomena, and modelling operations like explaining and reasoning. Besides planning teaching, the new approach can be used as an analysis tool in describing both historical modelling and the development of pupils representations. In the first phase of the study, the research question was: How did the historical models of DC-circuit phenomena develop in Volta s time? The analysis uncovered three qualitative historical models associated with the historical concept formation process. The models include conceptions of the electric circuit as a scene in the DC-circuit phenomena, the comparative electric-current phenomenon as a cause of different observable effect phenomena, and the strength of the battery as a cause of the electric-current phenomenon. These models describe the concept formation process and its phases in Volta s time. The models are portrayed in the analysis using fragments of the models, where observation-based fragments and theoretical fragements are distinguished from each other. The results emphasise the significance of the qualitative concept formation and the meaning of language in the historical modelling of DC-circuit phenomena. For this reason these viewpoints are stressed in planning the teaching experiment in the second phase of the research. In addition, the design process utilised the experimentation behind the historical models of DC-circuit phenomena In the third phase of the study the research question is as follows: How will the small group s external representations of DC-circuit phenomena develop during the teaching experiment? The main question is divided into the following two sub questions: What kind of talk exists in the small group s learning? What kinds of external representations for DC-circuit phenomena exist in the small group discourse during the teaching experiment? The analysis revealed that the teaching experiment of the small group succeeded in its aim to activate talk in the small group. The designed connection cards proved especially successful in activating talk. The connection cards are cards that represent the components of the electric circuit. In the teaching experiment the pupils constructed different connections with the connection cards and discussed, what kinds of DC-circuit phenomena would take place in the corresponding real connections. The talk of the small group was analysed by comparing two situations, firstly, when the small group discussed using connections made with the connection cards and secondly with the same connections using real components. According to the results the talk of the small group included more higher-order thinking when using the connection cards than with similar real components. In order to answer the second sub question concerning the small group s external representations that appeared in the talk during the teaching experiment; student talk was visualised by the fragment maps which incorporate the electric circuit, the electric current and the source voltage. The fragment maps represent the gradual development of the external representations of DC-circuit phenomena in the small group during the teaching experiment. The results of the study challenge the results of previous research into the abstractness and difficulty of electricity concepts. According to this research, the external representations of DC-circuit phenomena clearly developed in the small group of third graders. Furthermore, the fragment maps uncover that although the theoretical explanations of DC-circuit phenomena, which have been obtained as results of typical mental model studies, remain undeveloped, learning at the qualitative level of understanding does take place.
Resumo:
X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.
Resumo:
This article discusses the physics programme of the TOTEM experiment at the LHC. A new special beam optics with beta* = 90 m, enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described.
Resumo:
A search for new physics using three-lepton (trilepton) data collected with the CDF II detector and corresponding to an integrated luminosity of 976 pb-1 is presented. The standard model predicts a low rate of trilepton events, which makes some supersymmetric processes, such as chargino-neutralino production, measurable in this channel. The mu+mu+l signature is investigated, where l is an electron or a muon, with the additional requirement of large missing transverse energy. In this analysis, the lepton transverse momenta with respect to the beam direction (pT) are as low as 5 GeV/c, a selection that improves the sensitivity to particles which are light as well as to ones which result in leptonically decaying tau leptons. At the same time, this low-p_T selection presents additional challenges due to the non-negligible heavy-quark background at low lepton momenta. This background is measured with an innovative technique using experimental data. Several dimuon and trilepton control regions are investigated, and good agreement between experimental results and standard-model predictions is observed. In the signal region, we observe one three-muon event and expect 0.4+/-0.1 mu+mu+l events
Resumo:
A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.