24 resultados para TREATED OBESE MICE
em Helda - Digital Repository of University of Helsinki
Resumo:
Activation of midbrain dopamine systems is thought to be critically involved in the addictive properties of abused substances. Drugs of abuse increase dopamine release in the nucleus accumbens and dorsal striatum, which are the target areas of mesolimbic and nigrostriatal dopamine pathways, respectively. Dopamine release in the nucleus accumbens is thought to mediate the attribution of incentive salience to rewards, and dorsal striatal dopamine release is involved in habit formation. In addition, changes in the function of prefrontal cortex (PFC), the target area of mesocortical dopamine pathway, may skew information processing and memory formation such that the addict pays an abnormal amount of attention to drug-related cues. In this study, we wanted to explore how long-term forced oral nicotine exposure or the lack of catechol-O-methyltransferase (COMT), one of the dopamine metabolizing enzymes, would affect the functioning of these pathways. We also wanted to find out how the forced nicotine exposure or the lack of COMT would affect the consumption of nicotine, alcohol, or cocaine. First, we studied the effect of forced chronic nicotine exposure on the sensitivity of dopamine D2-like autoreceptors in microdialysis and locomotor activity experiments. We found that the sensitivity of these receptors was unchanged after forced oral nicotine exposure, although an increase in the sensitivity was observed in mice treated with intermittent nicotine injections twice daily for 10 days. Thus, the effect of nicotine treatment on dopamine autoreceptor sensitivity depends on the route, frequency, and time course of drug administration. Second, we investigated whether the forced oral nicotine exposure would affect the reinforcing properties of nicotine injections. The chronic nicotine exposure did not significantly affect the development of conditioned place preference to nicotine. In the intravenous self-administration paradigm, however, the nicotine-exposed animals self-administered nicotine at a lower unit dose than the control animals, indicating that their sensitivity to the reinforcing effects of nicotine was enhanced. Next, we wanted to study whether the Comt gene knock-out animals would be a suitable model to study alcohol and cocaine consumption or addiction. Although previous work had shown male Comt knock-out mice to be less sensitive to the locomotor-activating effects of cocaine, the present study found that the lack of COMT did not affect the consumption of cocaine solutions or the development of cocaine-induced place preference. However, the present work did find that male Comt knock-out mice, but not female knock-out mice, consumed ethanol more avidly than their wild-type littermates. This finding suggests that COMT may be one of the factors, albeit not a primary one, contributing to the risk of alcoholism. Last, we explored the effect of COMT deficiency on dorsal striatal, accumbal, and prefrontal cortical dopamine metabolism under no-net-flux conditions and under levodopa load in freely-moving mice. The lack of COMT did not affect the extracellular dopamine concentrations under baseline conditions in any of the brain areas studied. In the prefrontal cortex, the dopamine levels remained high for a prolonged time after levodopa treatment in male, but not female, Comt knock-out mice. COMT deficiency induced accumulation of 3,4-dihydroxyphenylacetic acid, which increased further under levodopa load. Homovanillic acid was not detectable in Comt knock-out animals either under baseline conditions or after levodopa treatment. Taken together, the present results show that although forced chronic oral nicotine exposure affects the reinforcing properties of self-administered nicotine, it is not an addiction model itself. COMT seems to play a minor role in dopamine metabolism and in the development of addiction under baseline conditions, indicating that dopamine function in the brain is well-protected from perturbation. However, the role of COMT becomes more important when the dopaminergic system is challenged, such as by pharmacological manipulation.
Resumo:
End-stage renal disease is an increasingly common pathologic condition, with a current incidence of 87 per million inhabitants in Finland. It is the end point of various nephropathies, most common of which is the diabetic nephropathy. This thesis focuses on exploring the role of nephrin in the pathogenesis of diabetic nephropathy. Nephrin is a protein of the glomerular epithelial cell, or podocyte, and it appears to have a crucial function as a component of the filtration slit diaphragm in the kidney glomeruli. Mutations in the nephrin gene NPHS1 lead to massive proteinuria. Along with the originally described location in the podocyte, nephrin has now been found to be expressed in the brain, testis, placenta and pancreatic beta cells. In type 1 diabetes, the fundamental pathologic event is the autoimmune destruction of the beta cells. Autoantibodies against various beta cell antigens are generated during this process. Due to the location of nephrin in the beta cell, we hypothesized that patients with type 1 diabetes may present with nephrin autoantibodies. We also wanted to test whether such autoantibodies could be involved in the pathogenesis of diabetic nephropathy. The puromycin aminonucleoside nephrosis model in the rat, the streptozotocin model in the rat, and the non-obese diabetic mice were studied by immunochemical techniques, in situ -hybridization and the polymerase chain reaction -based methods to resolve the expression of nephrin mRNA and protein in experimental nephropathies. To test the effect of antiproteinuric therapies, streptozotocin-treated rats were also treated with aminoguanidine or perindopril. To detect nephrin antibodies we developed a radioimmunoprecipitation assay and analyzed follow-up material of 66 patients with type 1 diabetes. In the puromycin aminonucleoside nephrosis model, the nephrin expression level was uniformly decreased together with the appearance of proteinuria. In the streptozotocin-treated rats and in non-obese diabetic mice, the nephrin mRNA and protein expression levels were seen to increase in the early stages of nephropathy. However, as observed in the streptozotocin rats, in prolonged diabetic nephropathy the expression level decreased. We also found out that treatment with perindopril could not only prevent proteinuria but also a decrease in nephrin expression in streptozotocin-treated rats. Aminoguanidine did not have an effect on nephrin expression, although it could attenuate the proteinuria. Circulating antibodies to nephrin in patients with type 1 diabetes were found, although there was no correlation with the development of diabetic nephropathy. At diagnosis, 24% of the patients had these antibodies, while at 2, 5 and 10 years of disease duration the respective proportions were 23%, 14% and 18%. During the total follow-up of 16 to 19 years after diagnosis of diabetes, 14 patients had signs of nephropathy and 29% of them tested positive for nephrin autoantibodies in at least one sample. In conclusion, this thesis work could show changes of nephrin expression along with the development of proteinuria. The autoantibodies against nephrin are likely generated in the autoimmune process leading to type 1 diabetes. However, according to the present work it is unlikely that these autoantibodies are contributing significantly to the development of diabetic nephropathy.
Resumo:
The rupture of a cerebral artery aneurysm causes a devastating subarachnoid hemorrhage (SAH), with a mortality of almost 50% during the first month. Each year, 8-11/100 000 people suffer from aneurysmal SAH in Western countries, but the number is twice as high in Finland and Japan. The disease is most common among those of working age, the mean age at rupture being 50-55 years. Unruptured cerebral aneurysms are found in 2-6% of the population, but knowledge about the true risk of rupture is limited. The vast majority of aneurysms should be considered rupture-prone, and treatment for these patients is warranted. Both unruptured and ruptured aneurysms can be treated by either microsurgical clipping or endovascular embolization. In a standard microsurgical procedure, the neck of the aneurysm is closed by a metal clip, sealing off the aneurysm from the circulation. Endovascular embolization is performed by packing the aneurysm from the inside of the vessel lumen with detachable platinum coils. Coiling is associated with slightly lower morbidity and mortality than microsurgery, but the long-term results of microsurgically treated aneurysms are better. Endovascular treatment methods are constantly being developed further in order to achieve better long-term results. New coils and novel embolic agents need to be tested in a variety of animal models before they can be used in humans. In this study, we developed an experimental rat aneurysm model and showed its suitability for testing endovascular devices. We optimized noninvasive MRI sequences at 4.7 Tesla for follow-up of coiled experimental aneurysms and for volumetric measurement of aneurysm neck remnants. We used this model to compare platinum coils with polyglycolic-polylactic acid (PGLA) -coated coils, and showed the benefits of the latter in this model. The experimental aneurysm model and the imaging methods also gave insight into the mechanisms involved in aneurysm formation, and the model can be used in the development of novel imaging techniques. This model is affordable, easily reproducible, reliable, and suitable for MRI follow-up. It is also suitable for endovascular treatment, and it evades spontaneous occlusion.
Resumo:
Cigarette smoking is, in developed countries, the leading cause of premature death. In tobacco smoke, the main addictive compound is nicotine, which in the brain binds to neuronal nicotinic acetylcholine receptors (neuronal nAChRs). These have been implicated in addiction, but also in several neurological disorders including Alzheimer's and Parkinson's diseases, Tourette's syndrome, attention-deficit hyperactivity disorder (ADHD), schizophrenia, pain, depression, and autosomal-dominant noctural frontal lobe epilepsy; all of which makes nAChRs an intriguing target of study. Chronic treatment with nicotine leads to an increase in the number of nAChRs (upregulation) in the brain and changes their functionality. Changes in the properties of nAChRs are likely to occur in smokers as well, since they are exposed to nicotine for long periods of time. Several nAChR subtypes likely play a role in the formation of nicotine addiction by participating in the release of dopamine in the striatum. The aim of this study was to clarify at cellular level the changes in nAChR characteristics resulting from chronic nicotine treatment. SH-SY5Y cells, endogenously several nAChR-expressing, and SH-EP1-h-alfa7 cells, transfected with the alfa 7 nAChR subunit gene were treated chronically with nicotine. The localisation of alfa 7 and beta2 subunits was studied with confocal and electron microscopy. Functionality of nAChRs was studied with calcium fluorometry. Effects of long-term treatment with opioid compounds on nAChRs were studied by means of ligand binding. Confocal microscopy showed that in SH-SY5Y cells, alfa7 and beta2 subunits formed clusters, unlike the case in SH-EP1-h alfa7 cells, where alfa7 nAChRs were distributed more diffusely. The majority of nAChR subunits localised on endoplasmic reticulum (ER). The isomers of methadone acted as agonists at alfa7 nAChRs. Acute morphine challenge also stimulated nAChRs. Chronic treatment with methadone or morphine led to an increased number of nAChRs. In animal studies, mice received nicotine for 7 weeks. Electron microscopical analysis of the localisation of nAChRs showed in the striatum that alfa7 and beta2 nAChR subunits localised synaptically, extrasynaptically, and intracellularly, with the majority localising extrasynaptically. Chronic nicotine treatment caused an increase in the number of nAChR subunits at all studied locations. These results suggest that the alfa7 nAChR and beta2 subunit-containing nAChRs respond to chronic nicotine treatment differently. This may indicate that the functional balance of various nAChR subtypes in control of the release of dopamine is altered as a result of chronic nicotine treatment. Compounds binding both to opioid and nACh receptors may be of clinical importance.
Resumo:
Diet high in dairy products is inversely associated with body mass index, risk of metabolic syndrome and prevalence of type 2 diabetes in several populations. Also a number of intervention studies support the role of increased dairy intake in the prevention and treatment of obesity. Dairy calcium has been suggested to account for the effect of dairy on body weight, but it has been repeatedly shown that the effect of dairy is superior to the effect of supplemental calcium. Dairy proteins are postulated to either enhance the effect of calcium or have an independent effect on body weight, but studies in the area are scarce. The aim of this study was to evaluate the potential of dairy proteins and calcium in the prevention and treatment of diet-induced obesity in C57Bl/6J mice. The effect of dairy proteins and calcium on the liver and adipose tissue was also investigated in order to characterise the potential mechanisms explaining the reduction of risk for metabolic syndrome and type 2 diabetes. A high-calcium diet (1.8%) in combination with dietary whey protein inhibited body weight and fat gain and accelerated body weight and fat loss in high-fat-fed C57Bl/6J mice during long-term studies of 14 to 21 weeks. α-lactalbumin, one of the major whey proteins, was the most effective whey protein fraction showing significantly accelerated weight and fat loss during energy restriction and reduced the amount of visceral fat gain during ad libitum feeding after weight loss. The microarray data suggest sensitisation of insulin signalling in the adipose tissue as a result of a calcium-rich whey protein diet. Lipidomic analysis revealed that weight loss on whey protein-based high-calcium diet was characterised by significant decreases in diabetogenic diacylglycerols and lipotoxic ceramide species. The calcium supplementation led to a small, but statistically significant decrease in fat absorption independent of the protein source of the diet. This augments, but does not fully explain the effects of the studied diets on body weight. A whey protein-containing high-calcium diet had a protective effect against a high-fat diet-induced decline of β3 adrenergic receptor expression in adipose tissue. In addition, a high-calcium diet with whey protein increased the adipose tissue leptin expression which is decreased in this obesity-prone mouse strain. These changes are likely to contribute to the inhibition of weight gain. The potential sensitisation of insulin signalling in adipose tissue together with the less lipotoxic and diabetogenic hepatic lipid profile suggest a novel mechanistic link to explain why increased dairy intake is associated with a lower prevalence of metabolic syndrome and type 2 diabetes in epidemiological studies. Taken together, the intake of a high-calcium diet with dairy proteins has a body weight lowering effect in high-fat-fed C57Bl/6J mice. High-calcium diets containing whey protein prevent weight gain and enhance weight loss, α-lactalbumin being the most effective whey protein fraction. Whey proteins and calcium have also beneficial effects on hepatic lipid profile and adipose tissue gene expression, which suggest a novel mechanistic link to explain the epidemiological findings on dairy intake and metabolic syndrome. The clinical relevance of these findings and the precise mechanisms of action remain an intriguing field of future research.
Resumo:
The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.
Resumo:
Autoimmune diseases affect 5 % of the population and come in many forms, such as diabetes, rheumatoid arthritis and MS. However, how and why autoimmune diseases arise are not yet fully resolved. In this thesis, the onset of autoimmunity was investigated using both patient samples and a mouse model of autoimmunity. Autoimmune diseases are usually complex, due to a number of different causative genes and environmental factors. However, a few monogenic autoimmune diseases have been described, which are caused by mutations in only one gene per disease. One of such disease is called APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) and is enriched in the Finnish population. The causative gene behind APECED is named AIRE from AutoImmune REgulator. How malfunction of just one gene product can cause the multitude of disease components found in APECED is not yet resolved. This thesis sought out to find out more about the functions of AIRE, in order to reveal why APECED and other autoimmune diseases arise and what goes wrong? Usually, immune cells are taught to distinguish between self and non-self during their development. That way, immune cells can fight off bacteria and microbes while leaving the tissues and organs of the host organism itself unharmed. In APECED, the development of immune cells called αβ T cells is incomplete. The cells are not able to fully distinguish between self and non-self. This leads to autodestruction of self tissues and autoimmune disease. One of the achievements of this thesis was the finding that the development of another set of T cells called γδ T cells is not affected by AIRE in mice or in men. Instead, we found that another type of immune cell important in tolerance, called the dendritic cell is defective in APECED patients and is not able to respond to microbial stimulus in a normal fashion. Finally, we studied Aire-deficient mice and found that autoantibodies expressed in the mice were not targeted against the same molecules as those found in APECED patients. This indicates differences in the autoimmune pathology in mice and men. More work is still required before we understand the mechanisms of tolerance and autoimmunity well enough to be able to cure APECED, let alone the more complex autoimmune diseases. Yet altogether, the findings of this thesis work bring us one step closer to finding out why and how APECED and common autoimmune diseases arise.
Resumo:
Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.
Resumo:
The incidence of colon cancer is high in Western societies, and in Finland it is among the three most common cancer types in both females and males. Environmental factors, including diet, affect colon cancer development. During the last few years, a vast amount of new, functional foods have been introduced to the consumers. Several products are already available that are marketed as promoting intestinal health. To be able to reliably call a dietary compound a chemopreventive substance it is of fundamental importance to understand the mechanism by which it affects tumour formation and the integrity of the epithelial cells. In this thesis, three different dietary compounds were studied in an experimental model of colon cancer. Inulin is a non-digestible fibre found naturally in chicory roots, artichokes and onions, amongst others. Nowadays it is widely used as an added dietary fibre in several food products. Conjugated linoleic acid (CLA) is a conjugated form of the fatty acid linoleic acid. CLA is formed by bacterial fermentation of linoleic acid in the rumen of cows and other ruminants. Concomitantly, it can naturally be found in milk and meat of ruminants. White currant is a colourless berry low in phenolic compounds that are believed to prevent cancer formation. Contrary to what was expected, inulin and the conjugated linoleic acid isomer trans-10, cis-12, were tumour growth promoting dietary constituents when fed to Min mice. Both diets decreased the NF-kappaB levels in the mucosa, but physiological adenoma development did not affect NF-kappaB. Diet altered beta-catenin and p53 signalling in the adenomas, confirming their involvement in adenoma growth. White currant, on the other hand, was chemopreventive, despite its low contents of phenolic compounds. The chemopreventive effect was accompanied by increased p53 levels in the mucosa, and decreased beta-catenin and NF-kappaB levels in the adenoma. This could explain the reduced adenoma number and size. The results underline the importance of carefully testing new dietary compounds in different settings to reliably confirm their health benefits. In this study two compounds that are consumed and believed to add to our health proved to be cancer promotive. A berry with low phenolic contents, on the other hand, was chemopreventive.
Resumo:
During the last 10-15 years interest in mouse behavioural analysis has evolved considerably. The driving force is development in molecular biological techniques that allow manipulation of the mouse genome by changing the expression of genes. Therefore, with some limitations it is possible to study how genes participate in regulation of physiological functions and to create models explaining genetic contribution to various pathological conditions. The first aim of our study was to establish a framework for behavioural phenotyping of genetically modified mice. We established comprehensive battery of tests for the initial screening of mutant mice. These included tests for exploratory and locomotor activity, emotional behaviour, sensory functions, and cognitive performance. Our interest was in the behavioural patterns of common background strains used for genetic manipulations in mice. Additionally we studied the behavioural effect of sex differences, test history, and individual housing. Our findings highlight the importance of careful consideration of genetic background for analysis of mutant mice. It was evident that some backgrounds may mask or modify the behavioural phenotype of mutants and thereby lead to false positive or negative findings. Moreover, there is no universal strain that is equally suitable for all tests, and using different backgrounds allows one to address possible phenotype modifying factors. We discovered that previous experience affected performance in several tasks. The most sensitive traits were the exploratory and emotional behaviour, as well as motor and nociceptive functions. Therefore, it may be essential to repeat some of the tests in naïve animals for assuring the phenotype. Social isolation for a long time period had strong effects on exploratory behaviour, but also on learning and memory. All experiments revealed significant interactions between strain and environmental factors (test history or housing condition) indicating genotype-dependent effects of environmental manipulations. Several mutant line analyses utilize this information. For example, we studied mice overexpressing as well as those lacking extracellular matrix protein heparin-binding growth-associated molecule (HB-GAM), and mice lacking N-syndecan (a receptor for HB-GAM). All mutant mice appeared to be fertile and healthy, without any apparent neurological or sensory defects. The lack of HB-GAM and N-syndecan, however, significantly reduced the learning capacity of the mice. On the other hand, overexpression of HB-GAM resulted in facilitated learning. Moreover, HB-GAM knockout mice displayed higher anxiety-like behaviour, whereas anxiety was reduced in HB-GAM overexpressing mice. Changes in hippocampal plasticity accompanied the behavioural phenotypes. We conclude that HB-GAM and N-syndecan are involved in the modulation of synaptic plasticity in hippocampus and play a role in regulation of anxiety- and learning-related behaviour.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.