16 resultados para Skin -- Molecular aspects.
em Helda - Digital Repository of University of Helsinki
Resumo:
Streptococcus pyogenes (group A streptococcus) is an important human pathogen, causing a wide array of infections ranging in severity. The majority of S. pyogenes infections are mild upper respiratory tract or skin infections. Severe, invasive infections, such as bacteraemia, are relatively rare, but constitute a major global burden with a high mortality. Certain streptococcal types are associated with a more severe disease and higher mortality. Bacterial, non-necrotizing cellulitis and erysipelas are localised infections of the skin, and although they are usually not life-threatening, they have a tendency to recur and therefore cause substantial morbidity. Despite several efforts aimed at developing an effective and safe vaccine against S. pyogenes infections, no vaccine is yet available. In this study, the epidemiology of invasive S. pyogenes infections in Finland was described over a decade of national, population-based surveillance. Recent trends in incidence, outcome and bacterial types were investigated. The beta-haemolytic streptococci causing cellulitis and erysipelas infections in Finland were studied in a case-control study. Bacterial isolates were characterised using both conventional and molecular typing methods, such as the emm typing, which is the most widely used typing method for beta-haemolytic streptococci. The incidence of invasive S. pyogenes disease has had an increasing trend during the past ten years in Finland, especially from 2006 onwards. Age- and sex-specific differences in the incidence rate were identified, with men having a higher incidence than women, especially among persons aged 45-64 years. In contrast, more infections occurred in women aged 25-34 years than men. Seasonal patterns with occasional peaks during the midsummer and midwinter were observed. Differences in the predisposing factors and underlying conditions of patients may contribute to these distinctions. Case fatality associated with invasive S. pyogenes infections peaked in 2005 (12%) but remained at a reasonably low level (8% overall during 2004-2007) compared to that of other developed countries (mostly exceeding 10%). Changes in the prevalent emm types were associated with the observed increases in incidence and case fatality. In the case-control study, acute bacterial non-necrotizing cellulitis was caused predominantly by Streptococcus dysgalactiae subsp. equisimilis, instead of S. pyogenes. The recurrent nature of cellulitis became evident. This study adds to our understanding of S. pyogenes infections in Finland and provides a basis for comparison to other countries and future trends. emm type surveillance and outcome analyses remain important for detecting such changes in type distribution that might lead to increases in incidence and case fatality. Bacterial characterisation serves as a basis for disease pathogenesis studies and vaccine development.
Resumo:
Staphylococcus aureus is one of the most important bacteria that cause disease in humans, and methicillin-resistant S. aureus (MRSA) has become the most commonly identified antibiotic-resistant pathogen in many parts of the world. MRSA rates have been stable for many years in the Nordic countries and the Netherlands with a low MRSA prevalence in Europe, but in the recent decades, MRSA rates have increased in those low-prevalence countries as well. MRSA has been established as a major hospital pathogen, but has also been found increasingly in long-term facilities (LTF) and in communities of persons with no connections to the health-care setting. In Finland, the annual number of MRSA isolates reported to the National Infectious Disease Register (NIDR) has constantly increased, especially outside the Helsinki metropolitan area. Molecular typing has revealed numerous outbreak strains of MRSA, some of which have previously been associated with community acquisition. In this work, data on MRSA cases notified to the NIDR and on MRSA strain types identified with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal cassette chromosome mec (SCCmec) typing at the National Reference Laboratory (NRL) in Finland from 1997 to 2004 were analyzed. An increasing trend in MRSA incidence in Finland from 1997 to 2004 was shown. In addition, non-multi-drug resistant (NMDR) MRSA isolates, especially those resistant only to methicillin/oxacillin, showed an emerging trend. The predominant MRSA strains changed over time and place, but two internationally spread epidemic strains of MRSA, FIN-16 and FIN-21, were related to the increase detected most recently. Those strains were also one cause of the strikingly increasing invasive MRSA findings. The rise of MRSA strains with SCCmec types IV or V, possible community-acquired MRSA was also detected. With questionnaires, the diagnostic methods used for MRSA identification in Finnish microbiology laboratories and the number of MRSA screening specimens studied were reviewed. Surveys, which focused on the MRSA situation in long-term facilities in 2001 and on the background information of MRSA-positive persons in 2001-2003, were also carried out. The rates of MRSA and screening practices varied widely across geographic regions. Part of the NMDR MRSA strains could remain undetected in some laboratories because of insufficient diagnostic techniques used. The increasing proportion of elderly population carrying MRSA suggests that MRSA is an emerging problem in Finnish long-term facilities. Among the patients, 50% of the specimens were taken on a clinical basis, 43% on a screening basis after exposure to MRSA, 3% on a screening basis because of hospital contact abroad, and 4% for other reasons. In response to an outbreak of MRSA possessing a new genotype that occurred in a health care ward and in an associated nursing home of a small municipality in Northern Finland in autumn 2003, a point-prevalence survey was performed six months later. In the same study, the molecular epidemiology of MRSA and methicillin-sensitive S. aureus (MSSA) strains were also assessed, the results to the national strain collection compared, and the difficulties of MRSA screening with low-level oxacillin-resistant isolates encountered. The original MRSA outbreak in LTF, which consisted of isolates possessing a nationally new PFGE profile (FIN-22) and internationally rare MLST type (ST-27), was confined. Another previously unrecognized MRSA strain was found with additional screening, possibly indicating that current routine MRSA screening methods may be insufficiently sensitive for strains possessing low-level oxacillin resistance. Most of the MSSA strains found were genotypically related to the epidemic MRSA strains, but only a few of them had received the SCCmec element, and all those strains possessed the new SCCmec type V. In the second largest nursing home in Finland, the colonization of S. aureus and MRSA, and the role of screening sites along with broth enrichment culture on the sensitivity to detect S. aureus were studied. Combining the use of enrichment broth and perineal swabbing, in addition to nostrils and skin lesions swabbing, may be an alternative for throat swabs in the nursing home setting, especially when residents are uncooperative. Finally, in order to evaluate adequate phenotypic and genotypic methods needed for reliable laboratory diagnostics of MRSA, oxacillin disk diffusion and MIC tests to the cefoxitin disk diffusion method at both +35°C and +30°C, both with or without an addition of sodium chloride (NaCl) to the Müller Hinton test medium, and in-house PCR to two commercial molecular methods (the GenoType® MRSA test and the EVIGENETM MRSA Detection test) with different bacterial species in addition to S. aureus were compared. The cefoxitin disk diffusion method was superior to that of oxacillin disk diffusion and to the MIC tests in predicting mecA-mediated resistance in S. aureus when incubating at +35°C with or without the addition of NaCl to the test medium. Both the Geno Type® MRSA and EVIGENETM MRSA Detection tests are usable, accurate, cost-effective, and sufficiently fast methods for rapid MRSA confirmation from a pure culture.
Resumo:
Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.
Resumo:
In complement activation, Factor H (FH) and C4b-binding protein (C4bp) are the key regulators that prevent the complement cascade from attacking host tissues. Some bacteria may bind and deposit these regulators on their own surfaces and thus provide themselves with an efficient means to avoid complement activation. In consequence, bacteria resist complement-mediated lysis and opsonin-dependent phagocytosis. This study has demonstrated that Y. enterocolitica, similar to many other pathogens, recruits both FH and C4bp to its surface to ensure protection against the complement-mediated killing. YadA and Ail, the most crucial serum resistance factors of Y.enterocolitica, mediate the binding of FH and C4bp. FH - YadA interaction involves multiple higher structural motifs on the YadA stalk and the short consensus repeats (SCRs) of the entire polypeptide chain of FH. The Ail binding site on FH has been located to SCRs 6 and 7. The binding site for FH on Ail, however, remains undetermined. Both YadA- and Ail-bound regulators display full cofactor activity for FI-mediated cleavage of C3b/C4b. FH/C4bp-binding characteristics do, however, differ between YadA and Ail. In addition, Ail captures the regulators only in the absence of blocking lipopolysaccharide O-antigen and outer core, whereas YadA binds FH/C4bp independent of the presence of other surface factors Independent of mode of binding, however, YadA and Ail provide Y. enterocolitica a means to avoid complement-mediated lysis, enhancing chances for the bacteria to survive in the host during various phases of infection.
Resumo:
Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.
Resumo:
Rhizoremediation is the use of microbial populations present in the rhizosphere of plants for environmental cleanup. The idea of this work was that bacteria living in the rhizosphere of a nitrogen-fixing leguminous plant, goat's rue (Galega orientalis), could take part in the degradation of harmful monoaromatic hydrocarbons, such as benzene, toluene and xylene (BTEX), from oil-contaminated soils. In addition to chemical (e.g. pollutant concentration) and physical (e.g. soil structure) information, the knowledge of biological aspects (e.g. bacteria and their catabolic genes) is essential when developing the rhizoremediation into controlled and effective bioremediation practice. Therefore, the need for reliable biomonitoring methods is obvious. The main aims of this thesis were to evaluate the symbiotic G. orientalis - Rhizobium galegae system for rhizoremediation of oil-contaminated soils, to develop molecular methods for biomonitoring, and to apply these methods for studying the microbiology of rhizoremediation. In vitro, Galega plants and rhizobia remained viable in m-toluate concentrations up to 3000 mg/l. Plant growth and nodulation were inhibited in 500 mg/l m-toluate, but were restored when plants were transferred to clean medium. In the greenhouse, Galega showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 mg/l m-toluate. The high aromatic tolerance of R. galegae and the viability of Galega plants in oil-polluted soils proved this legume system to be a promising method for the rhizoremediation of oil-contaminated soils. Molecular biomonitoring methods were designed and/or developed further for bacteria and their degradation genes. A combination of genomic fingerprinting ((GTG)5-PCR), taxonomic ribotyping of 16S rRNA genes and partial 16S rRNA gene sequencing were chosen for molecular grouping of culturable, heterogeneous rhizosphere bacteria. PCR primers specific for the xylE gene were designed for TOL plasmid detection. Amplified enzyme-coding DNA restriction analysis (AEDRA) with AluI was used to profile both TOL plasmids (xylE primers) and, in general, aromatics-degrading plasmids (C230 primers). The sensitivity of the direct monitoring of TOL plasmids in soil was enhanced by nested C23O-xylE-PCR. Rhizosphere bacteria were isolated from the greenhouse and field lysimeter experiments. High genetic diversity was observed among the 50 isolated, m-toluate tolerating rhizosphere bacteria in the form of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. The inoculum Pseudomonas putida PaW85/pWW0 was not found in the rhizosphere samples. Even if there were no ecological niches available for the bioaugmentation bacterium itself, its conjugative catabolic plasmid might have had some additional value for other bacterial species and thus, for rhizoremediation. Only 10 to 20% of the isolated, m-toluate tolerating bacterial strains were also able to degrade m-toluate. TOL plasmids were a major group of catabolic plasmids among these bacteria. The ability to degrade m-toluate by using enzymes encoded by a TOL plasmid was detected only in species of the genus Pseudomonas, and the best m-toluate degraders were these Pseudomonas species. Strain-specific differences in degradation abilities were found for P.oryzihabitans and P. migulae: some of these strains harbored a TOL plasmid - a new finding observed in this work, indicating putative horizontal plasmid transfer in the rhizosphere. One P. oryzihabitans strain harbored the pWW0 plasmid that had probably conjugated from the bioaugmentation Pseudomonas. Some P. migulae and P. oryzihabitans strains seemed to harbor both the pWW0- and the pDK1-type TOL plasmid. Alternatively, they might have harbored a TOL plasmid with both the pWW0- and the pDK1-type xylE gene. The breakdown of m-toluate by gram-negative bacteria was not restricted to the TOL pathway. Also some gram-positive Rhodococcus erythropolis and Arthrobacter aurescens strains were able to degrade m-toluate in the absence of a TOL plasmid. Three aspects of the rhizosphere effect of G. orientalis were manifested in oil-contaminated soil in the field: 1) G. orientalis and Pseudomonas bioaugmentation increased the amount of rhizosphere bacteria. G. orientalis especially together with Pseudomonas bioaugmentation increased the numbers of m-toluate utilizing and catechol positive bacteria indicating an increase in degradation potential. 2) Also the bacterial diversity, when measured as the amount of ribotypes, was increased in the Galega rhizosphere with or without Pseudomonas bioaugmentation. However, the diversity of m-toluate utilizing bacteria did not significantly increase. At the community level, by using the 16S rRNA gene PCR-DGGE method, the highest diversity of species was also observed in vegetated soils compared with non-vegetated soils. Diversified communities may best guarantee the overall success in rhizoremediation by offering various genetic machineries for catabolic processes. 3) At the end of the experiment, no TOL plasmid could be detected by direct DNA analysis in soil treated with both G. orientalis and Pseudomonas. The detection limit for TOL plasmids was encountered indicating decreased amount of degradation plasmids and thus, the success of rhizoremediation. The use of G. orientalis for rhizoremediation is unique. In this thesis new information was obtained about the rhizosphere effect of Galega orientalis in BTEX contaminated soils. The molecular biomonitoring methods can be applied for several purposes within environmental biotechnology, such as for evaluating the intrinsic biodegradation potential, monitoring the enhanced bioremediation, and estimating the success of bioremediation. Environmental protection by using nature's own resources and thus, acting according to the principle of sustainable development, would be both economically and environmentally beneficial for society. Keywords: molecular biomonitoring, genetic fingerprinting, soil bacteria, bacterial diversity, TOL plasmid, catabolic genes, horizontal gene transfer, rhizoremediation, rhizosphere effect, Galega orientalis, aerobic biodegradation, petroleum hydrocarbons, BTEX
Resumo:
The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.
Resumo:
NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.
Resumo:
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.
Resumo:
Measurement of fractional exhaled nitric oxide (FENO) has proven useful in assessment of patients with respiratory symptoms, especially in predicting steroid response. The objective of these studies was to clarify issues relevant for the clinical use of FENO. The influence of allergic sensitization per se on FENO in healthy asymptomatic subjects was studied, the association between airway inflammation and bronchial hyperresponsiveness (BHR) in steroid-naive subjects with symptoms suggesting asthma was examined, as well as the possible difference in this association between atopic and nonatopic subjects. Influence of smoking on FENO was compared between atopic and nonatopic steroid-naive asthmatics and healthy subjects. The short-term repeatability of FENO in COPD patients was examined in order to assess whether the degree of chronic obstruction influences the repeatability. For these purposes, we studied a random sample of 248 citizens of Helsinki, 227 army conscripts with current symptoms suggesting asthma, 19 COPD patients, and 39 healthy subjects. FENO measurement, spirometry and bronchodilatation test, structured interview. skin prick tests, and histamine and exercise challenges were performed. Among healthy subjects with no signs of airway diseases, median FENO was similar in skin prick test-positive and –negative subjects, and the upper normal limit of FENO was 30 ppb. In atopic and nonatopic subjects with symptoms suggesting asthma, FENO associated with severity of exercise- or histamine-induced BHR only in atopic patients. FENO in smokers with steroid-naive asthma was significantly higher than in healthy smokers and nonsmokers. Among atopic asthmatics, FENO was significantly lower in smokers than in nonsmokers, whereas no difference appeared among nonatopic asthmatics. The 24-h repeatability of FENO was equally good in COPD patients as in healthy subjects. These findings indicate that allergic sensitization per se does not influence FENO, supporting the view that elevated FENO indicates NO-producing airway inflammation, and that same reference range can be applied to both skin prick test-positive and -negative subjects. The significant correlation between FENO and degree of BHR only in atopic steroid-naive subjects with current asthmatic symptoms supports the view that pathogenesis of BHR in atopic asthma is strongly involved in NO-producing airway inflammation, whereas in development of BHR in nonatopic asthma other mechanisms may dominate. Attenuation of FENO only in atopic but not in nonatopic smokers with steroid-naive asthma may result from differences in mechanisms of FENO formation as well as in sensitivity of these mechanisms to smoking in atopic and nonatopic asthma. The results suggest, however, that in young adult smokers, FENO measurement may prove useful in assessment of airway inflammation. The short-term repeatability of FENO in COPD patients with moderate to very severe disease and in healthy subjects was equally good.
Resumo:
Prostate cancer (PCa) is the most commonly diagnosed non-skin cancer and second leading cause of cancer-related death of men in developed countries. Measurement of prostate specific antigen (PSA) is a very sensitive method for diagnosing and monitoring of prostate cancer (PCa), but the specificity needs improvement. Measurements of different molecular forms of PSA have been shown to improve differentiation between PCa and benign prostatic diseases. However, accurate measurement of some isoforms has not been achieved in previous assays. The aim of the present study was to develop new assays that reliably measure enzymatically active PSA, PSA-α1-chymotryposin (PSA-ACT) and PSA-α1-protease inhibitor (PSA-API), and to evaluate their diagnostic value. Double-label immunofluorometric assays using a novel monoclonal antibody (MAb) and another antibody to either free PSA (fPSA) or total PSA (tPSA) were developed and used to measure PSA-ACT and fPSA or tPSA at the same time. These assays provide enough sensitivity for measurement of PSA-ACT in sera with low PSA levels. The results obtained confirmed that proportion of PSA-ACT to tPSA (%PSA-ACT) was as useful as proportion of fPSA to tPSA (%fPSA) for discrimination between PCa and benign prostatic hyperplasia (BPH). We developed an immunoassay for detection of PSA-API based on proximity ligation, which improved assay sensitivity 10-fold compared with conventional assays. Our results confirmed previous findings that the PSA-API level is somewhat lower in men with than without PCa, and the combination of %fPSA and proportion of PSA-API to tPSA (%PSA-API) provides diagnostic improvement compared with either method alone. Assays based on this principle should be applicable to other immunoassays in which the nonspecific background is a problem. An immunopeptidometric sandwich assay (IPMA) was developed to measure the enzymatically active PSA. This assay showed high specificity, but sensitivity was not good enough for measurement of PSA concentrations in the gray zone, 2-10 µg/L, in which tPSA does not efficiently differentiate between PCa and BPH. We further developed a solid-phase proximity ligation immunoassay, which provided a 10-fold improvement in sensitivity. This proof of concept study shows that peptides reacting with proteins are potentially useful for sensitive and specific measurement of protein variants for which specific MAbs cannot be obtained.
Resumo:
Migraine is a highly prevalent disease, and despite several important breakthroughs there are still a many questions unanswered in the clinical, genetic and pathophysiological aspects of migraine research. Migraine has been linked to several other diseases such as epilepsy and stroke, but there are still unsolved issues concerning the true nature of these associations. Three genes predisposing to hemiplegic migraine and several loci associated to migraine have been identified, but so far no genes responsible for common forms of migraine have been recognized. Triptans have provided an important step in migraine treatment, but their usefulness in rare forms of migraine have been controversial. The Finnish Migraine Gene Project (FMGP) includes more than 1600 families and 7500 individuals. We evaluated comorbidity from 1000 consecutive subjects in the FMGP. To search for novel loci, we performed a genome-wide linkage scan in 36 families with high prevalences of migraine with visual aura. We collected 76 subjects from the FMGP who suffer from hemiplegic migraine and have used triptans. Finally, to study possible links between stroke and migraine we evaluated the prevalence of migraine in subjects with cervical artery dissection (CAD) and healthy controls. Migraine was associated with increased prevalence of allergy, hypotension and psychiatric diseases. Additionally, men suffering from migraine with aura had increased prevalence of epilepsy and stroke. Further evidence of association between migraine and epilepsy was found in our linkage study. The parametric two-point linkage analysis showed significant evidence of linkage between migraine aura and a locus on 9q21-q22. Interestingly, the same locus has been associated with occipitotemporal epilepsy. CAD seems to be a migraine risk factor, and therefore a link between stroke and migraine. Notably, CAD seems to alleviate migraine activity further indicating the association between these two conditions. Despite the contraindications of triptans, it seems that they are safe and effective in the abortive treatment of hemiplegic migraine.
Resumo:
This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.
Resumo:
Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.