6 resultados para Shallow Water Equations
em Helda - Digital Repository of University of Helsinki
Resumo:
Habitat requirements of fish are most strict during the early life stages, and the quality and quantity of reproduction habitats lays the basis for fish production. A considerable number of fish species in the northern Baltic Sea reproduce in the shallow coastal areas, which are also the most heavily exploited parts of the brackish marine area. However, the coastal fish reproduction habitats in the northern Baltic Sea are poorly known. The studies presented in this thesis focused on the influence of environmental conditions on the distribution of coastal reproduction habitats of freshwater fish. They were conducted in vegetated littoral zone along an exposure and salinity gradient extending from the innermost bays to the outer archipelago on the south-western and southern coasts of Finland, in the northern Baltic Sea. Special emphasis was placed on reed-covered Phragmites australis shores, which form a dominant vegetation type in several coastal archipelago areas. The main aims of this research were to (1) develop and test new survey and mapping methods, (2) investigate the environmental requirements that govern the reproduction of freshwater fish in the coastal area and (3) survey, map and model the distribution of the reproduction habitats of pike (Esox lucius) and roach (Rutilus rutilus). The white plate and scoop method with a standardized sampling time and effort was demonstrated to be a functional method for sampling the early life stages of fish in dense vegetation and shallow water. Reed-covered shores were shown to form especially important reproduction habitats for several freshwater fish species, such as pike, roach, other cyprinids and burbot, in the northern Baltic Sea. The reproduction habitats of pike were limited to sheltered reed- and moss-covered shores of the inner and middle archipelago, where suitable zooplankton prey were available and the influence of the open sea was low. The reproduction habitats of roach were even more limited and roach reproduction was successful only in the very sheltered reed-covered shores of the innermost bay areas, where salinity remained low (< 4‰) during the spawning season due to freshwater inflow. After identifying the critical factors restricting the reproduction of pike and roach, the spatial distribution of their reproduction habitats was successfully mapped and modelled along the environmental gradients using only a few environmental predictor variables. Reproduction habitat maps are a valuable tool promoting the sustainable use and management of exploited coastal areas and helping to maintain the sustainability of fish populations. However, the large environmental gradients and the extensiveness of the archipelago zone in the northern Baltic Sea demand an especially high spatial resolution of the coastal predictor variables. Therefore, the current lack of accurate large-scale, high-resolution spatial data gathered at exactly the right time is a considerable limitation for predictive modelling of shallow coastal waters.
Resumo:
Benthic-pelagic coupling describes processes that operate across and between the seafloor and open-water ecosystems. In soft-sediment communities, bioturbation by sediment-dwelling and epibenthic organisms may strongly shape habitat characteristics and influence processes, e.g. biogeochemical cycling, which supplies bioavailable nutrients to pelagic primary producers. In addition, benthic fauna may mediate benthic-pelagic coupling by affecting the survival and hatching of zooplankton dormant eggs in the sediment. In the shallow waters and seasonally fluctuating environment of the Baltic Sea, emergence from the seafloor essentially contributes to the dynamics of zooplankton pelagic populations. In this thesis, I examine how benthic organisms with different functional traits affect the link between the benthic and pelagic systems in the northern Baltic Sea. By means of experimental laboratory studies, the effects of sediment-dwelling (Monoporeia affinis, Macoma balthica and Marenzelleria spp.) and nectobenthic (Mysis spp.) taxa on the survival and hatching of zooplankton benthic eggs and on benthic nutrient fluxes and sediment structure were investigated. In the predation studies, the nectobenthic mysids Mysis spp. preyed upon benthic eggs of the cladoceran Bosmina longispina maritima (syn. B. coregoni maritima), both in pelagic and benthic environments. Of the sediment-dwelling species, the amphipod M. affinis and the bivalve M. balthica reduced the number of cladoceran eggs in the sediment, whereas the polychaetes Marenzelleria spp. had no effects on cladoceran eggs. Both M. balthica and M. affinis also increased the mortality rates of benthic eggs of copepods and rotifers. It was estimated that zooplankton eggs provide an additional carbon source for food-limited benthic communities. The results indicate that predation pressure on zooplankton benthic eggs may be strong, but varies widely depending on the season and the functional characteristics of the macrofauna. Macoma balthica buried cladoceran eggs and a fluorescent tracer from the sediment surface to a depth of 3 4 cm, indicating efficient sediment mixing. In contrast, the other taxa had fewer effects on particle distributions. In addition to organic matter mineralization, particle mixing is crucial to the success of benthic recruitment of zooplankton, since only eggs close to the sediment surface may hatch. Macoma balthica and M. affinis altered the patterns of zooplankton emergence from the sediment. In general, the highest emergence rates were observed in the absence of macroscopic fauna, and M. balthica exerted a stronger suppressive effect than M. affinis. Moreover, copepods were less severely affected than cladocerans, while only one species (Temora longicornis) clearly benefited from the presence of the macrofauna. These differences probably result from species-specific differences in the resistance of eggs to disturbances. The results show that benthic fauna may considerably alter the patterns of zooplankton emergence from the seafloor, thereby shaping zooplankton pelagic populations. The semi-motile M. balthica and Marenzelleria spp. increased the fluxes of phosphate and ammonium from the sediment to the water, whereas the motile M. affinis and Mysis mixta had a contrasting effect. In the eutrophied Baltic Sea, efficient internal cycling of bioavailable nutrients forms a strong feedback inhibiting the recovery of the ecosystem. Based on the results, a change in species dominance from the two motile taxa, susceptible to oxygen deficiency, to the more tolerant semi-motile taxa provides additional feedback, strengthening internal nutrient cycling and accelerating eutrophication, with deteriorating near-bottom oxygen conditions and changes in the benthic communities. In shallow-water ecosystems, benthic nutrient regeneration plays a key role in determining the overall productivity of the ecosystem. In addition, the results of this study show that the communities in the benthos may essentially contribute to the structure of those in the plankton.
Resumo:
Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.
Resumo:
The purpose of this study was to establish the palaeoenvironmental conditions during the late Quaternary in Murchisonfjorden, Nordaustlandet, based on foraminiferal assemblage compositions, and to determine the onset and termination of the Weichselian glaciations. The foraminiferal assemblage compositions were studied in marine sediments from three different archives, from sections next to the present shoreline in the Bay of Isvika, from a core in the Bay of Isvika and from a core from Lake Einstaken. OSL and AMS 14C age determinations were performed on samples from the three archives, and the results show deposition of marine sediments during ice-free periods of the Early Weichselian, the Middle Weichselian and the Late Weichselian, as well as during the Holocene in the investigated area. Marine sediments from the Early and Middle Weichselian were sampled from isostatically uplifted sections along the present shoreline.Sediments from the transition from the Late Weichselian to early Holocene time intervals were found in the bottom of the core from Lake Einstaken. Holocene sediments were investigated in the sections and in the core from the Bay of Isvika. The marine sediments from the sections are comprised of five benthic foraminiferal assemblages. The Early Weichselian is represented by two foraminiferal assemblages, the Middle Weichselian, the early and the late Holocene each by one. All five foraminiferal assemblages were deposited in glacier-distal shallow-water environments, which had a connection to the open ocean. Changes in the composition of the assemblages can be ascribed to differences in the bottom-water currents and changes in the salinity. The Middle Weichselian assemblage is of special importance, because it is the first foraminiferal assemblage to be described from this time interval from Svalbard. Four benthic foraminiferal assemblages were deposited shortly before the marine to lacustrine transition at the boundary between the Late Weichselian and Holocene in Lake Einstaken. The foraminiferal assemblages show a change from a high-arctic, normal marine shallow-water environment to an even shallower environment with highly fluctuating salinity. The analyses of the core from 100 m water depth in the Bay of Isvika resulted in the determination of four foraminiferal assemblages. These indicated changes from a glacier-proximal environment during deglaciation, to a more glacier-distal environment during the Early Holocene. This was followed by a period with a marked change to a considerably cooler environment and finally to a closed fjord environment in the middle and late Holocene times. Additional sedimentological analyses of the marine and glacially derived sediments from the uplifted sections, as well as observations of multiple striae on the bedrock, observations of deeply weathered bedrock and findings of tills interlayered with marine sediments complete the investigations in the study area. They indicate weak glacial erosion in the study area. It can be concluded that marine deposition occurred in the investigated area during three time intervals in the Weichselian and during most of the Holocene. The foraminiferal assemblages in the Holocene are characterized by a transition from glacier-proximal to glacier-distal faunas. The palaeogeographical change from an open fjord to a closed fjord environment is a result of the isostatic uplift of the area after the LGM and is clearly reflected in the foraminiferal assemblages. Another influencing factor on the foraminiferal assemblage composition are changes in the inflow of warmer Atlantic waters to the study area.
Resumo:
Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature estimations, because samples taken from the deepest point of a lake basin may infer considerably colder temperatures than expected, as shown by the present test results. Therefore, it is suggested here that the samples in fossil midge studies involving shallow boreal lakes should be taken from the sublittoral, where the assemblages are most representative of the whole lake fauna. Transfer functions between midge assemblages and the environmental forcing factors that were significantly related with the assemblages, including mean air TJul, water depth, hypolimnetic oxygen, stream flow and distance to littoral vegetation, were developed using weighted averaging (WA) and weighted averaging-partial least squares (WA-PLS) techniques, which outperformed all the other tested numerical approaches. Application of the models in downcore studies showed mostly consistent trends. Based on the present results, which agreed with previous studies and historical evidence, the Medieval Climate Anomaly between ca. 800 and 1300 AD in eastern Finland was characterized by warm temperature conditions and dry summers, but probably humid winters. The Little Ice Age (LIA) prevailed in southern Finland from ca. 1550 to 1850 AD, with the coldest conditions occurring at ca. 1700 AD, whereas in eastern Finland the cold conditions prevailed over a longer time period, from ca. 1300 until 1900 AD. The recent climatic warming was clearly represented in all of the temperature reconstructions. In the terms of long-term climatology, the present results provide support for the concept that the North Atlantic Oscillation (NAO) index has a positive correlation with winter precipitation and annual temperature and a negative correlation with summer precipitation in eastern Finland. In general, the results indicate a relatively warm climate with dry summers but snowy winters during the MCA and a cool climate with rainy summers and dry winters during the LIA. The results of the present reconstructions and the forthcoming applications of the models can be used in assessments of long-term environmental dynamics to refine the understanding of past environmental reference conditions and natural variability required by environmental scientists, ecologists and policy makers to make decisions concerning the presently occurring global, regional and local changes. The developed midge-based models for temperature, hypolimnetic oxygen, water depth, littoral vegetation shift and stream flow, presented in this thesis, are open for scientific use on request.
Resumo:
Sediment resuspension, the return of the bottom material into the water column, is an important process that can have various effects on a lake ecosystem. Resuspension caused by wind-induced wave disturbance, currents, turbulent fluctuations and bioturbation affects water quality characteristics such as turbidity, light conditions, and concentrations of suspended solids (SS) and nutrients. Resuspension-mediated increase in turbidity may favour the dominance of phytoplankton over macrophytes. The predator-prey interactions contributing to the trophic state of a lake may also be influenced by increasing turbidity. Directly, the trophic state of a lake can be influenced by the effect of sediment resuspension on nutrient cycling. Resuspension enhances especially the cycling of phosphorus by bringing the sedimentary nutrients back into the water column and may thereby induce switches between phosphorus and nitrogen limitation. The contribution of sediment resuspension to gross sedimentation, turbidity, and concentration of SS and nutrients was studied in a small, deep lake as well as in a multibasin lake with deep and shallow areas. The effect of ice cover on sediment resuspension and thereby on phosphorus concentrations was also studied. The rates of gross sedimentation and resuspen¬sion were estimated with sediment traps and the associations between SS and nutrients were considered. Sediment resuspension, caused by wind activity, comprised most of the gross sedimenta¬tion and strongly contributed to the concentration of SS and turbidity in the lakes studied. Additionally, via the influence on SS, resuspension affected the concentration of total phosphorus (TP) and soluble reactive phosphorus (SRP), as well as the total nitrogen to total phosphorus (TN:TP) ratio. Although contrasting results concerning the dependence between the SS and SRP concentrations were observed, it could be concluded that sediment resuspension during strong algal blooms (pH > 9) led to aerobic release of P. The main findings of this thesis were that in the course of the growing season, sediment resuspension coupled with phytoplankton succession led to liberation of P from resuspended particles, which in turn resulted in high TP concentrations and low TN:TP ratios. This development was likely a cause of strong cyanobacterial blooms in midsummer.