2 resultados para Schuyler, Philippa Duke.
em Helda - Digital Repository of University of Helsinki
Resumo:
The topic of my doctoral thesis is to demonstrate the usefulness of incorporating tonal and modal elements into a pitch-web square analysis of Béla Bartók's (1881-1945) opera, 'A kékszakállú herceg vára' ('Duke Bluebeard's Castle'). My specific goal is to demonstrate that different musical materials, which exist as foreground melodies or long-term key progressions, are unified by the unordered pitch set {0,1,4}, which becomes prominent in different sections of Bartók's opera. In Bluebeard's Castle, the set {0,1,4} is also found as a subset of several tetrachords: {0,1,4,7}, {0,1,4,8}, and {0,3,4,7}. My claim is that {0,1,4} serves to link music materials between themes, between sections, and also between scenes. This study develops an analytical method, drawn from various theoretical perspectives, for conceiving superposed diatonic spaces within a hybrid pitch-space comprised of diatonic and chromatic features. The integrity of diatonic melodic lines is retained, which allows for a non-reductive understanding of diatonic superposition, without appealing to pitch centers or specifying complete diatonic collections. Through combining various theoretical insights of the Hungarian scholar Ernő Lendvai, and the American theorists Elliott Antokoletz, Paul Wilson and Allen Forte, as well as the composer himself, this study gives a detailed analysis of the opera's pitch material in a way that combines, complements, and expands upon the studies of those scholars. The analyzed pitch sets are represented on Aarre Joutsenvirta's note-web square, which adds a new aspect to the field of Bartók analysis. Keywords: Bartók, Duke Bluebeard's Castle (Op. 11), Ernő Lendvai, axis system, Elliott Antokoletz, intervallic cycles, intervallic cells, Allen Forte, set theory, interval classes, interval vectors, Aarre Joutsenvirta, pitch-web square, pitch-web analysis.
Resumo:
Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.