34 resultados para Saline contamination

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Listeria monocytogenes is the causative agent of the severe foodborne infection listeriosis. The number of listeriosis cases in recent years has increased in many European countries, including Finland. Contamination of the pathogen needs to be minimized and growth to high numbers in foods prevented in order to reduce the incidence of human cases. The aim of this study was to evaluate contamination routes of L. monocytogenes in the food chain and to investigate methods for control of the pathogen in food processing. L. monocytogenes was commonly found in wild birds, the pig production chain and in pork production plants. It was found most frequently in birds feeding at landfill site, organic farms, tonsil samples, and sites associated with brining. L. monococytogenes in birds, farms, food processing plant or foods did not form distinct genetic groups, but populations overlapped. The majority of genotypes recovered from birds were also detected in foods, food processing environments and other animal species and birds may disseminate L. monocytogenes into food chain. Similar genotypes were found in different pigs on the same farm, as well as in pigs on farms and later in the slaughterhouse. L. monocytogenes contamination spreads at farm level and may be a contamination source into slaughterhouses and further into meat. Incoming raw pork in the processing plant was frequently contaminated with L. monocytogenes and genotypes in raw meat were also found in processing environment and in RTE products. Thus, raw material seems to be a considerable source of contamination into processing facilities. In the pork processing plant, the prevalence of L. monocytogenes increased in the brining area, showing that the brining was an important contamination site. Recovery of the inoculated L. monocytogenes strains showed that there were strain-specific differences in the ability to survive in lettuce and dry sausage. The ability of some L. monocytogenes strains to survive well in food production raises a challenge for industry, because these strains can be especially difficult to remove from the products and raises a need to use an appropriate hurdle concept to control most resistant strains. Control of L. monocytogenes can be implemented throughout the food chain. Farm-specific factors affected the prevalence of L. monocytogenes and good farm-level practices can therefore be utilized to reduce the prevalence of this pathogen on the farm and possibly further in the food chain. Well separated areas in a pork production plant had low prevalences of L. monocytogenes, thus showing that compartmentalization controls the pathogen in the processing line. The food processing plant, especially the brining area, should be subjected to disassembling, extensive cleaning and disinfection to eliminate persistent contamination by L. monocytogenes, and replacing brining with dry-salting should be considered. All of the evaluated washing solutions decreased the populations of L. monocytogenes on precut lettuce, but did not eliminate the pathogen. Thus, the safety of fresh-cut produce cannot rely on washing with disinfectants, and high-quality raw material and good manufacturing practices remain important. L. monocytogenes was detected in higher levels in sausages without the protective culture than in sausages with this protective strain, although numbers of L. monocytogenes by the end of the ripening decreased to the level of < 100 MPN/g in all sausages. Protective starter cultures provide an appealing hurdle in dry sausage processing and assist in the control of L. monocytogenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic goal of a proteomic microchip is to achieve efficient and sensitive high throughput protein analyses, automatically carrying out several measurements in parallel. A protein microchip would either detect a single protein or a large set of proteins for diagnostic purposes, basic proteome or functional analysis. Such analyses would include e.g. interactomics, general protein expression studies, detecting structural alterations or secondary modifications. Visualization of the results may occur by simple immunoreactions, general or specific labelling, or mass spectrometry. For this purpose we have manufactured chip-based proteome analysis devices that utilize the classical polymer gel electrophoresis technology to run one and two-dimensional gel electrophoresis separations of proteins in just a smaller size. In total, we manufactured three functional prototypes of which one performed a miniaturized one-dimensional gel electrophoresis (1-DE) separation, the second and third preformed two-dimensional gel electrophoresis (2-DE) separations. These microchips were successfully used to separate and characterize a set of predefined standard proteins, cell and tissue samples. Also, the miniaturized 2-DE (ComPress-2DE) chip presents a novel way of combining the 1st and 2nd dimensional separations, thus avoiding manual handling of the gels, eliminate cross-contamination, and make analyses faster and repeatability better. They all showed the advantages of miniaturization over the commercial devices; such as fast analysis, low sample- and reagent consumption, high sensitivity, high repeatability and inexpensive performance. All these instruments have the potential to be fully automated due to their easy-to-use set-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but to higher organisms as well, it is important to be able to estimate possible biological effects of heavy metals in the environment. This could be done by determining the bioavailable amount of the metals in the environment with bacterial bioreporters. That is, one can employ bacteria that respond to metal contamination by a measurable signal to assess the property of metals to cross biological membranes and to cause harmful effects in a possibly polluted environment. In this thesis a new lead resistance mechanism is described, interplay between CBA transporters and P-type ATPases in zinc and cadmium resistance is presented and finally the acquired knowledge is used to construct bacterial bioreporters for heavy metals with increased sensitivity and specificity. The new lead resistance model employs a P-type ATPase that removes Pb2+ ions from the cytoplasm and a phosphatase that produces inorganic phosphate for lead sequestration in the periplasm. This was the first study where the molecular mechanism of lead sequestration has been described. Characterization of two P-type ATPases and two CBA transporters showed that resistance mechanisms for Zn2+ and Cd2+ are somewhat different than for Pb2+ as these metals cannot be sequestered as insoluble compounds as easily. Resistance to Zn2+ was conferred merely by the CBA transporter that could export both cytoplasmic and periplasmic ions; whereas, full resistance to Cd2+ required interplay of a P-type ATPase that exported cytoplasmic ions to periplasm and a CBA transporter that further exported periplasmic ions to the outside. The knowledge on functionality of the transporters and metal-inducible promoters was exploited in bioreporter technology. A transporter-deficient bioreporter strain that lacked exporters for Zn2+/Cd2+/Pb2+ could detect up to 45-fold lower metal concentrations than its wild type counterpart due to the accumulation of metals in the cell. The broad specificity issue of bioreporters was overcome by using Zn-specific promoter as a sensor element, thus achieving Zn-specific bioreporter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Väitöskirjani käsittele mikrobien ja erilaisten kemikaalien rooleja saostumien ja biofilmien muodostumisessa paperi- ja kartonkikoneilla. "Saostuma" tässä työssä tarkoittaa kiinteän aineen kertymää konepinnoille tai rajapinnoille konekierroissa, jotka on tarkoitettu massasulppujen, lietteiden, vesien tai ilman kuljetukseen. Saostumasta tulee "biofilmi" silloin kun sen oleellinen rakennekomponentti on mikrobisolut tai niiden tuotteet. Väitöstyöni työhypoteesina oli, että i. tietämys saostumien koostumuksesta, sekä ii. niiden rakenteesta, biologisista, fysikaalis-kemiallisista ja teknisistä ominaisuuksista ohjaavat tutkijaa löytämään ympäristöä säästäviä keinoja estää epätoivottujen saostumien muodostus tai purkaa jo muodostuneita saostumia. Selvittääkseni saostumien koostumista ja rakennetta käytin monia erilaisia analytiikan työkaluja, kuten elektronimikroskopiaa, konfokaali-laser mikroskopiaa (CLSM), energiadispersiivistä röntgenanalyysiä (EDX), pyrolyysi kaasukromatografiaa yhdistettynä massaspektrometriaan (Py-GCMS), joninvaihtokromatografiaa, kaasukromatografiaa ja mikrobiologisia analyysejä. Osallistuin aktiivisesti innovatiivisen, valon takaisinsirontaan perustuvan sensorin kehittämistyöhön, käytettäväksi biofilmin kasvun mittaukseen suoraan koneen vesikierroista ja säiliöistä. Työni osoitti, että monet paperinvalmistuksessa käytetyistä kemikaaleista reagoivat keskenään tuottaen orgaanisia tahmakerroksia konekiertojen teräspinnoille. Löysin myös kerrostumia, jotka valomikroskooppisessa tarkastelussa oli tulkittu mikrobeiksi, mutta jotka elektronimikroskopia paljasti alunasta syntyneiksi, alumiinihydroksidiksi joka saostui pH:ssa 6,8 kiertokuitua käyttävän koneen viiravesistä. Monet paperintekijät käyttävät vieläkin alunaa kiinnitysaineena vaikka prosessiolot ovat muuttuneet happamista neutraaleiksi. Sitä pidetään paperitekijän "aspiriinina", mutta väitöstutkimukseni osoitti sen riskit. Löysin myös orgaanisia saostumia, joiden alkuperä oli aineiden, kuten pihkan, saippuoituminen (kalsium saippuat) niin että muodostui tahmankasvua ylläpitävä alusta monilla paperi- ja kartonkikoneilla. Näin solumuodoiltaan Deinococcus geothermalista muistuttavia bakteereita kasvamassa lujasti teräskoepalojen pintaan kiinnittyneinä pesäkkeinä, kun koepaloja upotettiin paperikoneiden vesikiertoihin. Nämä deinokokkimaiset pesäkkeet voivat toimia jalustana, tarttumisalustana muiden mikrobien massoille, joka selittäisi miksi saostumat yleisesti sisältävät deinokokkeja pienenä, muttei koskaan pääasiallisena rakenneosana. Kun paperikoneiden käyttämien vesien (raakavedet, lämminvesi, biologisesti puhdistettu jätevesi) laatua tutkitaan, mittausmenetelmällä on suuri merkitys. Koepalan upotusmenetelmällä todettu biofilmikasvu ja viljelmenetelmällä mitattu bakteerisaastuneisuus korreloivat toisiinsa huonosti etenkin silloin kun likaantumisessa oli mukana rihmamaiseti kasvavia bakteereja. Huoli ympäristöstä on pakottanut paperi- ja kartonkikoneiden vesikiertojen sulkemiseen. Vesien kierrätys ja prosessivesien uudelleenkäyttö nostavat prosessilämpötilaa ja lisäävät koneella kiertävien kolloidisten ja liuenneiden aineiden määriä. Tutkin kiertovesien pitoisuuksia kolmessa eriasteisesti suljetussa tehtaassa, joiden päästöt olivat 0 m3, 0,5 m3 ja 4 m3 jätevettä tuotetonnia kohden, perustuen puhdistetun jäteveden uudelleen käyttöön. Nollapäästöisellä tehtaalla kiertovesiin kertyi paljon orgaanisesti sidottua hiiltä (> 10 g L-1), etenkin haihtuvina happoina (maito-, etikka-, propioni- ja voi-). Myös sulfaatteja, klorideja, natriumia ja kalsiumia kertyi paljon, > 1 g L-1 kutakin. Pääosa (>40%) kaikista bakteereista oli 16S rRNA geenisekvenssianalyysien tulosten perusteella sukua, joskin etäistä (< 96%) ainoastaan Enterococcus cecorum bakteerille. 4 m3 päästävältä tehtaalta löytyi lisäksi Bacillus thermoamylovorans ja Bacillus coagulans. Tehtaiden saostumat sisälsivät arkkeja suurina pitoisuuksina, ≥ 108 g-1, mutta tunnistukseen riittävää sekvenssisamanlaisuutta löytyi vain yhteen arkkisukuun, Methanothrix. Tutkimustulokset osoittivat että tehtaan vesikiertojen sulkeminen vähensi rajusti mikrobiston monimuotoisuutta, muttei estänyt liuenneen aineen ja kiintoaineen mineralisoitumista.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of the results. Polyaromatic hydrocarbons, originating from petroleum, are known to be among the most harmful substances to the marine environment. In Baltic subsurface water, seasonal dependence of the total hydrocarbon concentrations (THCs) was seen. Although concentrations of parent polycyclic aromatic hydrocarbons (PAHs) in sediment surface varied between 64 and 5161 ug kg-1 (dw), concentrations above 860 ug kg-1 (dw) were found in all the studied sub-basins of the Baltic Sea. Concentrations commonly considered to substantially increase the risk of liver disease and reproductive impairment in fish, as well as potential effects on growth (above 1000 ug kg-1 dw), were found in all the studied sub-basins of the Baltic Sea except Kattegat. Thus, considerable pollution in sediments was indicated. In bivalves, the sums of 12 PAHs varied on a wet weight basis between 44 and 298 ug kg-1 (ww). The predominant PAHs were high molecular weight and the PAH profiles of M. balthica differed from those found in sediment from the same area. The PAHs were both pyrolytic and petrogenic in origin, and a contribution from diesel engines was found, which indicates pollution of the Baltic Sea, most likely caused by the steadily increasing shipping in the area. The HPLC methods developed for hepatic EROD activity and bile metabolite measurements proved to be fast and suitable for the study of biological effects. A mixed function oxygenase enzyme system in Baltic Sea perch collected from the Gulf of Finland was induced slightly: EROD activity in perch varied from 0.30 14 pmol min-1 mg-1 protein. This range can be considered to be comparable to background values. Recent PAH exposure was also indicated by enhanced levels (213 and 1149 ug kg-1) of the bile metabolite 1-hydroxypyrene. No correlation was indicated between hepatic EROD activity and concentration of 1-hydroxypyrene in bile. PCBs and OCPs were observed in Baltic Sea sediment, bivalves and herring. Sums of seven CBs in surface sediment (0 5 cm) ranged from 0.04 to 6.2 ug kg-1 (dw) and sums of three DDTs from 0.13 to 5.0 ug kg-1 (dw). The highest levels of contaminants were found in the most eastern area of the Gulf of Finland where the highest total carbon and nitrogen content was found and where the lowest percentage proportion of p,p -DDT was found. The highest concentrations of CBs and the lowest concentration of DDTs were found in M. balthica from the Gulf of Finland. The highest levels of DDTs were found in M. balthica from the Hanö Bight, which is the outer part of the Bornholm Basin close to the Swedish mainland. In bivalves, the sums of seven CBs were 72 108 ug kg-1 (lw) and the sums of three DDTs were 66 139 ug kg-1 (lw). Results from temporal trend monitoring showed, that during the period 1985 2002, the concentrations of seven CBs in two-year-old female Baltic herring were clearly decreased, from 9 16 to 2 6 ug kg-1 (ww) in the northern Baltic Sea. At the same time, concentrations of three DDTs declined from 8 15 to 1 5 ug kg-1 (ww). The total concentration of the fat-soluble CBs and DDTs in Baltic herring muscle was shown to be age-dependent; the average concentrations in ten-year-old Baltic herring were three to five-fold higher than in two-year-old herring. In Baltic herring and bivalves, as well as in surface sediments, CB 138 and CB153 were predominant among CBs, whereas among DDTs p,p'-DDD predominated in sediment and p,p'-DDE in bivalves and Baltic herring muscle. Baltic Sea sediments are potential sources of contaminants that may become available for bioaccumulation. Based on ecotoxicological assessment criteria, cause for concern regarding CBs in sediments was indicated for the Gulf of Finland and the northern Baltic Proper, and for the northern Baltic Sea regarding CBs in Baltic herring more than two years old. Statistical classification of selected organic contaminants indicated high-level contamination for p,p'-DDT, p,p'-DDD, p,p'-DDE, total DDTs, HCB, CB118 and CB153 in muscle of Baltic herring in age groups two to ten years; in contrast, concentrations of a-HCH and g-HCH were found to be moderate. The concentrations of DDTs and CBs in bivalves is sufficient to cause biological effects, and demonstrates that long-term biological effects are still possible in the case of DDTs in the Hanö Bight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, separation methods have been developed for the analysis of anthropogenic transuranium elements plutonium, americium, curium and neptunium from environmental samples contaminated by global nuclear weapons testing and the Chernobyl accident. The analytical methods utilized in this study are based on extraction chromatography. Highly varying atmospheric plutonium isotope concentrations and activity ratios were found at both Kurchatov (Kazakhstan), near the former Semipalatinsk test site, and Sodankylä (Finland). The origin of plutonium is almost impossible to identify at Kurchatov, since hundreds of nuclear tests were performed at the Semipalatinsk test site. In Sodankylä, plutonium in the surface air originated from nuclear weapons testing, conducted mostly by USSR and USA before the sampling year 1963. The variation in americium, curium and neptunium concentrations was great as well in peat samples collected in southern and central Finland in 1986 immediately after the Chernobyl accident. The main source of transuranium contamination in peats was from global nuclear test fallout, although there are wide regional differences in the fraction of Chernobyl-originated activity (of the total activity) for americium, curium and neptunium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contamination of urban streams is a rising topic worldwide, but the assessment and investigation of stormwater induced contamination is limited by the high amount of water quality data needed to obtain reliable results. In this study, stream bed sediments were studied to determine their contamination degree and their applicability in monitoring aquatic metal contamination in urban areas. The interpretation of sedimentary metal concentrations is, however, not straightforward, since the concentrations commonly show spatial and temporal variations as a response to natural processes. The variations of and controls on metal concentrations were examined at different scales to increase the understanding of the usefulness of sediment metal concentrations in detecting anthropogenic metal contamination patterns. The acid extractable concentrations of Zn, Cu, Pb and Cd were determined from the surface sediments and water of small streams in the Helsinki Metropolitan region, southern Finland. The data consists of two datasets: sediment samples from 53 sites located in the catchment of the Stream Gräsanoja and sediment and water samples from 67 independent catchments scattered around the metropolitan region. Moreover, the sediment samples were analyzed for their physical and chemical composition (e.g. total organic carbon, clay-%, Al, Li, Fe, Mn) and the speciation of metals (in the dataset of the Stream Gräsanoja). The metal concentrations revealed that the stream sediments were moderately contaminated and caused no immediate threat to the biota. However, at some sites the sediments appeared to be polluted with Cu or Zn. The metal concentrations increased with increasing intensity of urbanization, but site specific factors, such as point sources, were responsible for the occurrence of the highest metal concentrations. The sediment analyses revealed, thus a need for more detailed studies on the processes and factors that cause the hot spot metal concentrations. The sediment composition and metal speciation analyses indicated that organic matter is a very strong indirect control on metal concentrations, and it should be accounted for when studying anthropogenic metal contamination patterns. The fine-scale spatial and temporal variations of metal concentrations were low enough to allow meaningful interpretation of substantial metal concentration differences between sites. Furthermore, the metal concentrations in the stream bed sediments were correlated with the urbanization of the catchment better than the total metal concentrations in the water phase. These results suggest that stream sediments show true potential for wider use in detecting the spatial differences in metal contamination of urban streams. Consequently, using the sediment approach regional estimates of the stormwater related metal contamination could be obtained fairly cost-effectively, and the stability and reliability of results would be higher compared to analyses of single water samples. Nevertheless, water samples are essential in analysing the dissolved concentrations of metals, momentary discharges from point sources in particular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this study is to evaluate selected geophysical, structural and topographic methods on regional, local, and tunnel and borehole scales, as indicators of the properties of fracture zones or fractures relevant to groundwater flow. Such information serves, for example, groundwater exploration and prediction of the risk of groundwater inflow in underground construction. This study aims to address how the features detected by these methods link to groundwater flow in qualitative and semi-quantitative terms and how well the methods reveal properties of fracturing affecting groundwater flow in the studied sites. The investigated areas are: (1) the Päijänne Tunnel for water-conveyance whose study serves as a verification of structures identified on regional and local scales; (2) the Oitti fuel spill site, to telescope across scales and compare geometries of structural assessment; and (3) Leppävirta, where fracturing and hydrogeological environment have been studied on the scale of a drilled well. The methods applied in this study include: the interpretation of lineaments from topographic data and their comparison with aeromagnetic data; the analysis of geological structures mapped in the Päijänne Tunnel; borehole video surveying; groundwater inflow measurements; groundwater level observations; and information on the tunnel s deterioration as demonstrated by block falls. The study combined geological and geotechnical information on relevant factors governing groundwater inflow into a tunnel and indicators of fracturing, as well as environmental datasets as overlays for spatial analysis using GIS. Geophysical borehole logging and fluid logging were used in Leppävirta to compare the responses of different methods to fracturing and other geological features on the scale of a drilled well. Results from some of the geophysical measurements of boreholes were affected by the large diameter (gamma radiation) or uneven surface (caliper) of these structures. However, different anomalies indicating more fractured upper part of the bedrock traversed by well HN4 in Leppävirta suggest that several methods can be used for detecting fracturing. Fracture trends appear to align similarly on different scales in the zone of the Päijänne Tunnel. For example, similarities of patterns were found between the regional magnetic trends, correlating with orientations of topographic lineaments interpreted as expressions of fracture zones. The same structural orientations as those of the larger structures on local or regional scales were observed in the tunnel, even though a match could not be made in every case. The size and orientation of the observation space (patch of terrain at the surface, tunnel section, or borehole), the characterization method, with its typical sensitivity, and the characteristics of the location, influence the identification of the fracture pattern. Through due consideration of the influence of the sampling geometry and by utilizing complementary fracture characterization methods in tandem, some of the complexities of the relationship between fracturing and groundwater flow can be addressed. The flow connections demonstrated by the response of the groundwater level in monitoring wells to pressure decrease in the tunnel and the transport of MTBE through fractures in bedrock in Oitti, highlight the importance of protecting the tunnel water from a risk of contamination. In general, the largest values of drawdown occurred in monitoring wells closest to the tunnel and/or close to the topographically interpreted fracture zones. It seems that, to some degree, the rate of inflow shows a positive correlation with the level of reinforcement, as both are connected with the fracturing in the bedrock. The following geological features increased the vulnerability of tunnel sections to pollution, especially when several factors affected the same locations: (1) fractured bedrock, particularly with associated groundwater inflow; (2) thin or permeable overburden above fractured rock; (3) a hydraulically conductive layer underneath the surface soil; and (4) a relatively thin bedrock roof above the tunnel. The observed anisotropy of the geological media should ideally be taken into account in the assessment of vulnerability of tunnel sections and eventually for directing protective measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viruses of Archaea are the least studied group of viruses. Fewer than 50 archaeal viruses have been reported which constitutes less than one percent of all the isolated prokaryotic viruses. Only about one third of the isolated archaeal viruses infect halophiles. The diversity of haloviruses, virus ecology in highly saline environments and the interactions of haloviruses with their hosts have been little studied. The exiguous knowledge available on halophilic systems is not only due to inadequate sampling but also reflects the extra challenge highly saline systems set on biochemical studies. In this study six new haloviruses were isolated and characterized. Viruses included four archaeal viruses and two bacteriophages. All of the other isolates exhibited head-tail morphology, except SH1 which was the first tailless icosahedral virus isolated from a high salt environment. Production and purification procedures were set up for all of these viruses and they were subjected to stability determinations. Archaeal virus SH1 was studied in more detail. Biochemical studies revealed an internal membrane underneath the protein capsid and a linear dsDNA genome. The overall structure of SH1 resembles phages PRD1, PM2 and Bam35 as well as an archaeal virus STIV. SH1 possesses about 15 structural proteins that form complexes under non-reducing conditions. Quantitative dissociation provided information about the positions of these proteins in the virion. The life cycle of SH1 was also studied. This lytic virus infects Haloarcula hispanica. Adsorption to the host cells is fairly inefficient and the life cycle rather long. Finally, virus responses in a variety of ionic conditions were studied. It was discovered that all of the studied viruses from low salt, marine and high salt environments tolerated larger range of salinities than their bacterial or archaeal hosts. The adsorption efficiency was not determined by the natural environment of a virus. Even though viruses with the slowest binding kinetics were among the haloviruses, fast binders were observed in viruses from all environments. When the salinity was altered, the virus adsorption responses were diverse. Four different behavioral patterns were observed: virus binding increased or decreased in increasing salinity, adsorption maximum was at a particular salt concentration or the salinity did not affect the binding. The way the virus binding was affected did not correlate with the environment, virus morphology or the organism the virus infects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archaea were long thought to be a group of ancient bacteria, which mainly lived in extreme environments. Due to the development of DNA sequencing methods and molecular phylogenetic analyses, it was shown that the living organisms are in fact divided into three domains; the Archaea, Bacteria and the Eucarya. Since the beginning of the previous decade, it was shown that archaea generally inhabit moderate environments and that these non-extremophilic archaea are more ubiquitous than the extremophiles. Group 1 of non-extreme archaea affiliate with the phylum Crenarchaeota. The most commonly found soil archaea belong to the subgroup 1.1b. However, the Crenarchaeota found in the Fennoscandian boreal forest soil belong to the subgroup 1.1c. The organic top layer of the boreal forest soil, the humus, is dominated by ectomycorrhizal fungal hyphae. These colonise virtually all tree fine root tips in the humus layer and have been shown to harbour distinct bacterial populations different from those in the humus. The archaea have also been shown to colonise both boreal forest humus and the rhizospheres of plants. In this work, studies on the archaeal communities in the ectomycorrhizospheres of boreal forest trees were conducted in microcosms. Archaea belonging to the group 1.1c Crenarchaeota and Euryarchaeota of the genera Halobacterium and Methanolobus were detected. The archaea generally colonised fungal habitats, such as ectomycorrhizas and external mycelia, rather than the non-mycorrhizal fine roots of trees. The species of ectomycorrhizal fungus had a great impact on the archaeal community composition. A stable euryarchaeotal community was detected especially in the mycorrhizas, of most of the tested Scots pine colonising ectomycorrhizal fungi. The Crenarchaeota appeared more sporadically in these habitats, but had a greater diversity than the Euryarchaeota. P. involutus mycorrhizas had a higher diversity of 1.1c Crenarchaeota than the other ectomycorrhizal fungi. The detection level of archaea in the roots of boreal trees was generally low although archaea have been shown to associate with roots of different plants. However, alder showed a high diversity of 1.1c Crenarchaeota, exceeding that of any of the tested mycorrhizas. The archaeal 16S rRNA genes detected from the non-mycorrhizal roots were different from those of the P. involutus mycorrhizas. In the phylogenetic analyses, the archaeal 16S rRNA gene sequences obtained from non-mycorrhizal fine roots fell in a separate cluster within the group 1.1c Crenarchaeota than those from the mycorrhizas. When the roots of the differrent tree species were colonised by P. involutus, the diversity and frequency of the archaeal populations of the different tree species were more similar to each other. Both Cren- and Euryarchaeota were enriched in cultures to which C-1 substrates were added. The 1.1c Crenarchaeota grew anaerobically in mineral medium with CH4 and CO2 as the only available C sources, and in yeast extract media with CO2 and CH4 or H2. The crenarchaeotal diversity was higher in aerobic cultures on mineral medium with CH4 or CH3OH than in the anaerobic cultures. Ecological functions of the mycorrhizal 1.1c Crenarchaeota in both anaerobic and aerobic cycling of C-1 compounds were indicated. The phylogenetic analyses did not divide the detected Crenarchaeota into anaerobic and aerobic groups. This may suggest that the mycorrhizospheric crenarchaeotal communities consist of closely related groups of anaerobic and aerobic 1.1c Crenarchaeota, or the 1.1c Crenarchaeota may be facultatively anaerobic. Halobacteria were enriched in non-saline anaerobic yeast extract medium cultures in which CH4 was either added or produced, but were not detected in the aerobic cultures. They may potentially be involved in anaerobic CH4 cycling in ectomycorrhizas. The CH4 production of the mycorrhizal samples was over 10 times higher than for humus devoid of mycorrhizal hyphae, indicating a high CH4 production potential of the mycorrhizal metanogenic community. Autofluorescent methanogenic archaea were detected by microscopy and 16S rRNA gene sequences of the genus Methanolobus were obtained. The archaeal community depended on both tree species and the type of ectomycorrhizal fungus colonising the roots and the Cren- and Euryarchaeota may have different ecological functions in the different parts of the boreal forest tree rhizosphere and mycorrhizosphere. By employing the results of this study, it may be possible to isolate both 1.1c Crenarchaeota as well as non-halophilic halobacteria and aerotolerant methanogens from mycorrhizospheres. These archaea may be used as indicators for change in the boreal forest soil ecosystem due to different factors, such as exploitations of forests and the rise in global temperature. More information about the microbial populations with apparently low cell numbers but significant ecological impacts, such as the boreal forest soil methanogens, may be of crucial importance to counteract human impacts on such globally important ecosystems as the boreal forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis was to examine the ecophysiological responses of Scots pine (Pinus sylvestris L.), with an emphasis on the oxidative enzyme peroxidase and plant phenolics to environmental stresses like elevated levels of nickel (Ni) and copper (Cu), and herbivory. The effects of Ni and Cu were studied in a gradient survey at a sulphur dioxide contaminated site in the Kola Peninsula, and with experiments in which seedlings were exposed to Ni mist or to Ni and Cu amended into the soil. In addition, experimental Ni exposure was combined with disturbance of the natural lichen cover of the forest ground layer. Pine sawfly attack was simulated in the early season defoliation experiment, in which mature Scots pine were defoliated (100 %) during two successive years in a dry, nutrient-poor Scots pine stand. In addition, the effect of previous defoliation on the growth of sawfly (Diprion pini L.) larvae was studied. Apoplastic peroxidase activity was elevated in the needles of pine in a Ni- , Cu- and SO2- polluted environment, which indicated an increased oxidative stress. Increased foliar peroxidase activity due to Ni contamination was shown in the experiment, in which Ni was added as mist. No such response was found in peroxidase acitivity of the roots exposed to elevated Ni and/or Cu in the soil. Elevated Ni in the soil increased the concentration of foliar condensed tannins, which are able to bind heavy metals in the cells. Addition of low levels of Ni in the soil appeared to benefit pine seedlings, which was seen as promoted shoot growth and better condition of the roots. Wet Ni deposition of 2000 mg m-2 reduced growth and survival of pine seedlings, whereas deposition levels 200 mg m-2 or 20 mg m-2 caused no effects in a 2-y lasting experiment. The lichen mat on the forest floor did not act as an effective buffer against the adverse impacts of heavy metals on pine seedlings. However, some evidence was found indicating that soil microbes profited from the lichen mat. Artificial defoliation increased peroxidase activity in the Scots pine needles. In addition, defoliation decreased nitrogen, diamine putrescine and glucose concentrations in the needles and increased the concentrations of several phenolic compounds, starch and sucrose. Previous artificial defoliation led to poor growth of sawfly larvae reared on the pines, suggesting delayed induced resistance in Scots pine. However, there was no consistent relationship between inducibility (proportional increase in a compound following defoliation) and adverse effects on the growth of pine sawfly larvae. The observed inducible responses in needle phenolics due to previous defoliation thus appear to represent non-specific responses against sawflies.