5 resultados para SMA wire actuator
em Helda - Digital Repository of University of Helsinki
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Anadromous whitefish is one of the most important fish species in the Finnish coastal fisheries in the Gulf fo Bothnia. To compensate the lost reproduction due to river damming and to support the fisheries, several million one-summer old whitefish are released yearly into the Gulf of Bothnia. Since there are naturally reproducing whitefish in the Gulf as well, and the wild and stocked fish can not be separated in the catch, stocking impact can only be estimated by marking the stocked fish. Due to the small size and large number of released whitefish, the scattered fishery and large area where the whitefish migrate, most of the traditionally used fish marking methods were either unsuitable (e.g. Carlin-tags) or proved to be too expensive (e.g. coded wire tags). Fluorescent pigment spraying method offers a fast and cost-effective method to mass-mark young fish. However, the results are not always satisfactory due to low long-time retention of the marks in some species. The method has to be tested and proper marking conditions and methods determined for each species. This thesis is based on work that was accomplished while developing the fluorescent pigment spraying method for marking one-summer old whitefish fingerlings, and it draws together the results of mass-marking whitefish fingerlings that were released in the Gulf of Bothnia. Fluorescent pigment spraying method is suitable for one-summer old whitefish larger than 8 cm total length. The water temperature during the marking should not exceed 10o C. Suitable spraying pressure is 6 bars measured in the compressor outlet, and the distance of the spraying gun nozzle should be ca 20 cm from the fish. Under such conditions, the marking results in long-term retention of the mark with low or no mortality. The stress level of the fish (measured as muscle water content) rises during the marking procedure, but if the fish are allowed to recover after marking, the overall stress level remains within the limits observed in normal fish handling during the capture-loading-transport-stocking procedure. The marked whitefish fingerlings are released into the sea at larger size and later in the season than the wild whitefish. However, the stocked individuals migrate to the southern feeding grounds in a similar pattern to the wild ones. The catch produced by whitefish stocking in the Gulf of Bothnia varied between released fingerling groups, but was within the limits reported elsewhere in Finland. The releases in the southern Bothnian Bay resulted in a larger catch than those made in the northern Bothnian Bay. The size of the released fingerlings seemed to have some effect on survival of the fish during the first winter in the sea. However, when the different marking groups were compared, the mean fingerling size was not related to stocking success.
Resumo:
Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.
Resumo:
The Transition Radiation Tracker (TRT) of the ATLAS experiment at the LHC is part of the Inner Detector. It is designed as a robust and powerful gaseous detector that provides tracking through individual drift-tubes (straws) as well as particle identification via transition radiation (TR) detection. The straw tubes are operated with Xe-CO2-O2 70/27/3, a gas that combines the advantages of efficient TR absorption, a short electron drift time and minimum ageing effects. The modules of the barrel part of the TRT were built in the United States while the end-cap wheels are assembled at two Russian institutes. Acceptance tests of barrel modules and end-cap wheels are performed at CERN before assembly and integration with the Semiconductor Tracker (SCT) and the Pixel Detector. This thesis first describes simulations the TRT straw tube. The argon-based acceptance gas mixture as well as two xenon-based operating gases are examined for its properties. Drift velocities and Townsend coefficients are computed with the help of the program Magboltz and used to study electron drift and multiplication in the straw using the software Garfield. The inclusion of Penning transfers in the avalanche process leads to remarkable agreements with experimental data. A high level of cleanliness in the TRT s acceptance test gas system is indispensable. To monitor gas purity, a small straw tube detector has been constructed and extensively used to study the ageing behaviour of the straw tube in Ar-CO2. A variety of ageing tests are presented and discussed. Acceptance tests for the TRT survey dimensions, wire tension, gas-tightness, high-voltage stability and gas gain uniformity along each individual straw. The thesis gives details on acceptance criteria and measurement methods in the case of the end-cap wheels. Special focus is put on wire tension and straw straightness. The effect of geometrically deformed straws on gas gain and energy resolution is examined in an experimental setup and compared to simulation studies. An overview of the most important results from the end-cap wheels tested up to this point is presented.
Resumo:
This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.