41 resultados para Resistance testing
em Helda - Digital Repository of University of Helsinki
Resumo:
In Finland, barley, Hordeum vulgare L., covers 50 % of the total acreage devoted to cereal cultivation. The most common disease of barley in Finland is net blotch, a foliar disease caused by the ascomycete Pyrenophora teres Drechsler. Disease resistance based on plant genes is an environmentally friendly and economical way to manage plant diseases caused by biotic stresses. Development of a disease resistance breeding programme is dependent on knowledge of the pathogen. In addition to information on the epidemiology and virulence of a pathogen, knowledge on how the pathogen evolves and the nature of the risks that might arise in the future are essential issues that need to be taken into account to achieve the final breeding aims. The main objectives of this study were to establish reliable and efficient testing methods for Pyrenophora teres f. teres virulence screening, and to understand the role of virulence of P. teres f. teres in Finland from a disease resistance breeding point of view. The virulence of P. teres was studied by testing 239 Finnish P. teres f. teres isolates collected between 1994 2007 originating from 19 locations, and 200 P. teres progeny isolates originating from artificially produced P. teres matings. According to the results of this study, screening for P. teres f. teres isolates on barley seedlings under greenhouse conditions is a feasible and cost efficient method to describe the virulence spectrum of the pathogen. Inoculum concentration and the seedling leaf used to gauge virulence had significant effects. Barley grain size, morphological traits of P. teres isolates, spore production and growth rate on agar did not affect the expression of virulence. A common barley differential set to characterize the P. teres virulence was developed and is recommended to be used globally. The virulence spectrum of Finnish P. teres f. teres isolates collected in 1994-2007 was constant both within and between the years. The results indicated differences in the pathogen s aggressiveness and in barley genotypes resistance. However, differences in virulence were rarely significant. Unlike in laboratory conditions, no indications of changes in virulence caused by the sexual reproduction have been observed in Finnish barley fields. In Finland, durable net blotch resistance has been achieved by introducing resistance from other barley varieties using traditional crossing methods, including wide crossing, and testing the breeding material at early generations at several sites under natural infection pressure. Novel resistance is available, which is recommended to minimize the risk of selection of virulent isolates and breakdown of currently deployed resistance.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
Titled "An Essay on Antimetaphoric Resistance", the dissertation investigates what is here being called "Counter-figures": a term which has in this context a certain variety of applications. Any other-than-image or other-than-figure, anything that cannot be exhausted by figuration (and that is, more or less, anything at all, except perhaps the reproducible images and figures themselves) can be considered "counter-figurative" with regard to the formation of images and figures, ideas and schemas, "any graven image, or any likeness of any thing". Singularity and radical alterity, as well as temporality and its peculiar mode of uniqueness are key issues here, and an ethical dimension is implied by, or intertwined with, the aesthetic. In terms borrowed from Paul Celan's "Meridian" speech, poetry may "allow the most idiosyncratic quality of the Other, its time, to participate in the dialogue". This connection between singularity, alterity and temporality is one of the reasons why Celan so strongly objects to the application of the traditional concept of metaphor to poetry. As Celan says, "carrying over [übertragen]" by metaphor may imply an unwillingness to "bear with [mittragen]" and to "endure [ertragen]" the poem. The thesis is divided into two main parts. The first consists of five distinct prolegomena which all address the mentioned variety of applications of the term "counter-figures", and especially the rejection or critique of either metaphor (by Aristotle, for instance) or the concept of metaphor (defined by Aristotle, and sometimes deemed "anti-poetic" by both theorists and poets). Even if we restrict ourselves to the traditional rhetorico-poetical terms, we may see how, for instance, metonymy can be a counter-figure for metaphor, allegory for symbol, and irony for any single trope or for any piece of discourse at all. The limits of figurality may indeed be located at these points of intersection between different types of tropes or figures, and even between figures or tropes and the "non-figurative trope" or "pseudo-figure" called catachresis. The second part, following on from the open-ended prolegomena, concentrates on Paul Celan's poetry and poetics. According to Celan, true poetry is "essentially anti-metaphoric". I argue that inasmuch as we are willing to pay attention to the "will" of the poetic images themselves (the tropes and metaphors in a poem) to be "carried ad absurdum", as Celan invites us to do, we may find alternative ways of reading poetry and approaching its "secret of the encounter", precisely when the traditional rhetorical instruments, and especially the notion of metaphor, become inapplicable or suspicious — and even where they still seem to impose themselves.
Resumo:
Type 2 diabetes is an increasing, serious, and costly public health problem. The increase in the prevalence of the disease can mainly be attributed to changing lifestyles leading to physical inactivity, overweight, and obesity. These lifestyle-related risk factors offer also a possibility for preventive interventions. Until recently, proper evidence regarding the prevention of type 2 diabetes has been virtually missing. To be cost-effective, intensive interventions to prevent type 2 diabetes should be directed to people at an increased risk of the disease. The aim of this series of studies was to investigate whether type 2 diabetes can be prevented by lifestyle intervention in high-risk individuals, and to develop a practical method to identify individuals who are at high risk of type 2 diabetes and would benefit from such an intervention. To study the effect of lifestyle intervention on diabetes risk, we recruited 522 volunteer, middle-aged (aged 40 - 64 at baseline), overweight (body mass index > 25 kg/m2) men (n = 172) and women (n = 350) with impaired glucose tolerance to the Diabetes Prevention Study (DPS). The participants were randomly allocated either to the intensive lifestyle intervention group or the control group. The control group received general dietary and exercise advice at baseline, and had annual physician's examination. The participants in the intervention group received, in addition, individualised dietary counselling by a nutritionist. They were also offered circuit-type resistance training sessions and were advised to increase overall physical activity. The intervention goals were to reduce body weight (5% or more reduction from baseline weight), limit dietary fat (< 30% of total energy consumed) and saturated fat (< 10% of total energy consumed), and to increase dietary fibre intake (15 g / 1000 kcal or more) and physical activity (≥ 30 minutes/day). Diabetes status was assessed annually by a repeated 75 g oral glucose tolerance testing. First analysis on end-points was completed after a mean follow-up of 3.2 years, and the intervention phase was terminated after a mean duration of 3.9 years. After that, the study participants continued to visit the study clinics for the annual examinations, for a mean of 3 years. The intervention group showed significantly greater improvement in each intervention goal. After 1 and 3 years, mean weight reductions were 4.5 and 3.5 kg in the intervention group and 1.0 kg and 0.9 kg in the control group. Cardiovascular risk factors improved more in the intervention group. After a mean follow-up of 3.2 years, the risk of diabetes was reduced by 58% in the intervention group compared with the control group. The reduction in the incidence of diabetes was directly associated with achieved lifestyle goals. Furthermore, those who consumed moderate-fat, high-fibre diet achieved the largest weight reduction and, even after adjustment for weight reduction, the lowest diabetes risk during the intervention period. After discontinuation of the counselling, the differences in lifestyle variables between the groups still remained favourable for the intervention group. During the post-intervention follow-up period of 3 years, the risk of diabetes was still 36% lower among the former intervention group participants, compared with the former control group participants. To develop a simple screening tool to identify individuals who are at high risk of type 2 diabetes, follow-up data of two population-based cohorts of 35-64 year old men and women was used. The National FINRISK Study 1987 cohort (model development data) included 4435 subjects, with 182 new drug-treated cases of diabetes identified during ten years, and the FINRISK Study 1992 cohort (model validation data) included 4615 subjects, with 67 new cases of drug-treated diabetes during five years, ascertained using the Social Insurance Institution's Drug register. Baseline age, body mass index, waist circumference, history of antihypertensive drug treatment and high blood glucose, physical activity and daily consumption of fruits, berries or vegetables were selected into the risk score as categorical variables. In the 1987 cohort the optimal cut-off point of the risk score identified 78% of those who got diabetes during the follow-up (= sensitivity of the test) and 77% of those who remained free of diabetes (= specificity of the test). In the 1992 cohort the risk score performed equally well. The final Finnish Diabetes Risk Score (FINDRISC) form includes, in addition to the predictors of the model, a question about family history of diabetes and the age category of over 64 years. When applied to the DPS population, the baseline FINDRISC value was associated with diabetes risk among the control group participants only, indicating that the intensive lifestyle intervention given to the intervention group participants abolished the diabetes risk associated with baseline risk factors. In conclusion, the intensive lifestyle intervention produced long-term beneficial changes in diet, physical activity, body weight, and cardiovascular risk factors, and reduced diabetes risk. Furthermore, the effects of the intervention were sustained after the intervention was discontinued. The FINDRISC proved to be a simple, fast, inexpensive, non-invasive, and reliable tool to identify individuals at high risk of type 2 diabetes. The use of FINDRISC to identify high-risk subjects, followed by lifestyle intervention, provides a feasible scheme in preventing type 2 diabetes, which could be implemented in the primary health care system.
Resumo:
Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.
Resumo:
In complement activation, Factor H (FH) and C4b-binding protein (C4bp) are the key regulators that prevent the complement cascade from attacking host tissues. Some bacteria may bind and deposit these regulators on their own surfaces and thus provide themselves with an efficient means to avoid complement activation. In consequence, bacteria resist complement-mediated lysis and opsonin-dependent phagocytosis. This study has demonstrated that Y. enterocolitica, similar to many other pathogens, recruits both FH and C4bp to its surface to ensure protection against the complement-mediated killing. YadA and Ail, the most crucial serum resistance factors of Y.enterocolitica, mediate the binding of FH and C4bp. FH - YadA interaction involves multiple higher structural motifs on the YadA stalk and the short consensus repeats (SCRs) of the entire polypeptide chain of FH. The Ail binding site on FH has been located to SCRs 6 and 7. The binding site for FH on Ail, however, remains undetermined. Both YadA- and Ail-bound regulators display full cofactor activity for FI-mediated cleavage of C3b/C4b. FH/C4bp-binding characteristics do, however, differ between YadA and Ail. In addition, Ail captures the regulators only in the absence of blocking lipopolysaccharide O-antigen and outer core, whereas YadA binds FH/C4bp independent of the presence of other surface factors Independent of mode of binding, however, YadA and Ail provide Y. enterocolitica a means to avoid complement-mediated lysis, enhancing chances for the bacteria to survive in the host during various phases of infection.
Resumo:
Rituximab, a monoclonal antibody against B-cell specific CD20 antigen, is used for the treatment of non-Hodgkin lymphomas (NHL) and chronic lymphatic leukemia. In combination with chemotherapeutics rituximab has remarkably improved the outcome of NHL patients, but a vast variation in the lengths of remissions remains and the outcome of individual patients is difficult to predict. This thesis has searched for an explanation for this by studying the effector mechanisms of rituximab and by comparing gene expression in lymphoma tissue samples of patients with long- and short-term survival. This work demonstrated that activation of complement (C) system is in vitro more efficient effector mechanism of rituximab than cellular mechanisms or apoptosis. Activation of the C system was also shown in vivo during rituximab treatment. However, intravenously administered rituximab could not enter the cerebrospinal fluid, and neither C activation nor removal of lymphoma cells was observed in central nervous system. In vitro cytotoxicity assays showed that rituximab-induced cell killing could be markedly improved with simultaneous neutralization of the C regulatory proteins CD46 (Membrane cofactor protein), CD55 (Decay-accelerating factor), and CD59 (protectin). In a retrospective study of follicular lymphoma (FL) patients, low lymphoma tissue mRNA expressions of CD59 and CD55 were associated with a good prognosis and in a progressive flow cytometry study high expression of CD20 relative to CD55 was correlated to a longer progression free survival. Gene expression profile analysis revealed that expression of certain often cell cycle, signal transduction or immune response related genes correlate with clinical outcome of FL patients. Emphasizing the role of tumor microenvironment the best differentiating genes Smad1 and EphA1 were demonstrated to be mainly expressed in the non-malignant cells of tumors. In conclusion, this thesis shows that activation of the C system is a clinically important effector mechanism of rituximab and that microenvironment factor in tumors and expression of C regulatory proteins affect markedly the efficacy of immunochemotherapy. This data can be used to identify more accurately the patients for whom immunochemotherapy is given. It may also be beneficial in development of rituximab-containing and other monoclonal antibody therapies against cancer.
Resumo:
In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but to higher organisms as well, it is important to be able to estimate possible biological effects of heavy metals in the environment. This could be done by determining the bioavailable amount of the metals in the environment with bacterial bioreporters. That is, one can employ bacteria that respond to metal contamination by a measurable signal to assess the property of metals to cross biological membranes and to cause harmful effects in a possibly polluted environment. In this thesis a new lead resistance mechanism is described, interplay between CBA transporters and P-type ATPases in zinc and cadmium resistance is presented and finally the acquired knowledge is used to construct bacterial bioreporters for heavy metals with increased sensitivity and specificity. The new lead resistance model employs a P-type ATPase that removes Pb2+ ions from the cytoplasm and a phosphatase that produces inorganic phosphate for lead sequestration in the periplasm. This was the first study where the molecular mechanism of lead sequestration has been described. Characterization of two P-type ATPases and two CBA transporters showed that resistance mechanisms for Zn2+ and Cd2+ are somewhat different than for Pb2+ as these metals cannot be sequestered as insoluble compounds as easily. Resistance to Zn2+ was conferred merely by the CBA transporter that could export both cytoplasmic and periplasmic ions; whereas, full resistance to Cd2+ required interplay of a P-type ATPase that exported cytoplasmic ions to periplasm and a CBA transporter that further exported periplasmic ions to the outside. The knowledge on functionality of the transporters and metal-inducible promoters was exploited in bioreporter technology. A transporter-deficient bioreporter strain that lacked exporters for Zn2+/Cd2+/Pb2+ could detect up to 45-fold lower metal concentrations than its wild type counterpart due to the accumulation of metals in the cell. The broad specificity issue of bioreporters was overcome by using Zn-specific promoter as a sensor element, thus achieving Zn-specific bioreporter.
Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters
Resumo:
This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit