4 resultados para Recherche à voisinage variable

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forestry has influenced forest dwelling organisms for centuries in Fennoscandia. For example, in Finland ca. 30% of the threatened species are threatened because of forestry. Nowadays forest management recommendations include practices aimed at maintaining biodiversity in harvesting, such as green-tree retention. However, the effects of these practices have been little studied. In variable retention, different numbers of trees are retained, varying from green-tree retention (at least a few live standing trees in clear-cuts) to thinning (only individual trees removed). I examined the responses of ground-dwelling spiders and carabid beetles to green-tree retention (with small and large tree groups), gap felling and thinning aimed at an uneven age structure of trees. The impacts of these harvesting methods were compared to those of clear-cutting and uncut controls. I aimed to test the hypothesis that retaining more trees positively affects populations of those species of spiders and carabids that were present before harvesting. The data come from two studies. First, spiders were collected with pitfall traps in south-central Finland in 1995 (pre-treatment) and 1998 (after-treatment) in order to examine the effects of clear-cutting, green-tree retention (with 0.01-0.02-ha sized tree groups), gap felling (with three 0.16-ha sized openings in a 1-ha stand), thinning aiming at an uneven age structure of trees and uncut control. Second, spiders and carabids were caught with pitfall traps in eastern Finland in 1998-2001 (pre-treatment and three post-treatment years) in eleven 0.09-0.55-ha sized retention-tree groups and clear-cuts adjacent to them. Original spider and carabid assemblages were better maintained after harvests that retained more trees. Thinning maintained forest spiders well. However, gap felling and large retention-tree groups maintained some forest spider and carabid species in the short-term, but negatively affected some species over time. However, use of small retention-tree groups was associated with negative effects on forest spider populations. Studies are needed on the long-term effects of variable retention on terrestrial invertebrates; especially those directed at defining appropriate retention patch size and on the importance of structural diversity provided by variable retention for invertebrate populations. However, the aims of variable retention should be specified first. For example, are retention-tree groups planned to constitute life-boats , stepping-stones or to create structural diversity? Does it suffice that some species are maintained, or do we want to preserve the most sensitive ones, and how are these best defined? Moreover, the ecological benefits and economic costs of modified logging methods should be compared to other approaches aimed at maintaining biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial and temporal variation in the abundance of species can often be ascribed to spatial and temporal variation in the surrounding environment. Knowledge of how biotic and abiotic factors operate over different spatial and temporal scales in determining distribution, abundance, and structure of populations lies at the heart of ecology. The major part of the current ecological theory stems from studies carried out in central parts of the distributional range of species, whereas knowledge of how marginal populations function is inadequate. Understanding how marginal populations, living at the edge of their range, function is however in a key position to advance ecology and evolutionary biology as scientific disciplines. My thesis focuses on the factors affecting dynamics of marginal populations of blue mussels (Mytilus edulis) living close to their tolerance limits with regard to salinity. The thesis aims to highlight the dynamics at the edge of the range and contrast these with dynamics in more central parts of the range in order to understand the potential interplay between the central and the marginal part in the focal system. The objectives of the thesis are approached by studies on: (1) factors affecting regional patterns of the species, (2) long-term temporal dynamics of the focal species spaced along a regional salinity gradient, (3) selective predation by increasing populations of roach (Rutilus rutilus) when feeding on their main food item, the blue mussel, (4) the primary and secondary effects of local wave exposure gradients and (5) the role of small-scale habitat heterogeneity as determinants of large-scale pattern. The thesis shows that populations of blue mussels are largely determined by large scale changes in sea water salinity, affecting mainly recruitment success and longevity of local populations. In opposite to the traditional view, the thesis strongly indicate that vertebrate predators strongly affect abundance and size structure of blue mussel populations, and that the role of these predators increases towards the margin where populations are increasingly top-down controlled. The thesis also indicates that the positive role of biogenic habitat modifiers increases towards the marginal areas, where populations of blue mussels are largely recruitment limited. Finally, the thesis shows that local blue mussel populations are strongly dependent on high water turbulence, and therefore, dense populations are constrained to offshore habitats. Finally, the thesis suggests that ongoing sedimentation of rocky shores is detrimental for the species, affecting recruitment success and post-recruit survival, pushing stable mussel beds towards offshore areas. Ongoing large scale changes in the Baltic Sea, especially dilution processes with attendant effects, are predicted to substantially contract the distributional range of the mussel, but also affect more central populations. The thesis shows that in order to understand the functioning of marginal populations, research should (1) strive for multi-scale approaches in order to link ecosystem patterns with ecosystem processes, and (2) challenge the prevailing tenets that origin from research carried out in central areas that may not be valid at the edge.