5 resultados para Q15, Q23, Q53

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past years, much research on sarcomas based on low-resolution cytogenetic and molecular cytogenetic methods has been published, leading to the identification of genetic abnormalities partially underlying the tumourigenesis. Continued progress in the identification of genetic events such as copy number aberrations relies upon adapting the rapidly evolving high-resolution microarray technology, which will eventually provide novel insights into sarcoma biology, and targets for both diagnostics and drug development. The aim of this Thesis was to characterize DNA copy number changes that are involved in the pathogenesis of soft tissue leiomyosarcoma (LMS), dermatofibrosarcoma protuberans (DFSP), osteosarcoma (OS), malignant fibrous histiocytoma (MFH), and uterine leiomyosarcoma (ULMS) by applying fine resolution array comparative genomic hybridization (aCGH) technology. Both low- and high-grade LMS tumours showed distinct copy number patterns, in addition to sharing two minimal common regions of gains and losses. Small aberrations were detected by aCGH, which were beyond the resolution of chromosomal comparative genomic hybridization (cCGH). DFSP tumours analysed by aCGH showed gains in 17q, 22q, and 21 additional gained regions, but only one region (22q) with copy number loss. Recurrent amplicons identified in OS by aCGH were 12q11-q15, 8q, 6p12-p21, and 17p. Amplicons 12q and 17p were further characterized in detail. The amplicon at 17p was characterized by aCGH in low- and high-grade LMS, OS, and MFH. In all but one case this amplicon, with minimal common regions of gains at 17p11-p12, started with the distal loss of 17p13-pter. OS and high-grade LMS were grouped together as they showed a complex pattern of copy number gains and amplifications at 17p, whereas MFH and low-grade LMS showed a continuous pattern of copy number gains and amplification at 17p. In addition to the commonly gained and lost regions identified in ULMS by aCGH, various biological processes affected by these copy number changes were also indicated by pathway analysis. The three novel findings obtained in this work were: characterization of amplicon 17p in low- and high-grade LMS and MFH, profiles of DNA copy number changes in LMS, and detection of various pathways affected by copy number changes in ULMS. These studies have not been undertaken previously by aCGH technology, thus this Thesis adds new information regarding DNA copy number changes in sarcomas. In conclusion, the aCGH technique used in this Thesis has provided new insights into the genetics of sarcomas by detecting the precise regions affected by copy number changes and some potential candidate target genes within those regions, which had not been uncovered by previously applied low resolution techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the last 15 years, several new leukoencephalopathies have been recognized. However, more than half of children with cerebral white matter abnormalities still have no specific diagnosis. Our aim was to classify unknown leukoencephalopathies and to identify new diseases among them. During the study, three subgroups of patients were delineated and examined further. First, we evaluated 38 patients with unknown leukoencephalopathy. Brain MRI findings were grouped into seven categories according to the predominant location of the abnormalities. The largest subgroups were myelination abnormalities (n=20) and periventricular white matter abnormalities (n=12). Six patients had uniform MRI findings with signal abnormalities in hemispheric white matter and in selective brain stem and spinal cord tracts. Magnetic resonance spectroscopy (MRS) showed elevated lactate and decreased N-acetylaspartate in the abnormal white matter. The patients presented with ataxia, tremor, distal spasticity, and signs of dorsal column dysfunction. This phenotype - leukoencephalopathy with brain stem and spinal cord involvement and elevated white matter lactate (LBSL) - was first published elsewhere in 2003. A new finding was development of a mild axonal neuropathy. The etiopathogenesis of this disease is unknown, but elevated white matter lactate in MRS suggests a mitochondrial disorder. Secondly, we studied 22 patients with 18q deletions. Clinical and MRI findings were correlated with molecularly defined size of the deletion. All patients with deletions between markers D18S469 and D18S1141 (n=18) had abnormal myelination in brain MRI, while four patients with interstitial deletions sparing that region, had normal myelination pattern. Haploinsufficiency of myelin basic protein is suggested to be responsible for this dysmyelination. Congenital aural atresia/stenosis was found in 50% of the cases and was associated with deletions between markers D18S812 (at 18q22.3) and D18S1141 (at q23). Last part of the study comprised 13 patients with leukoencephalopathy and extensive cerebral calcifications. They showed a spectrum of findings, including progressive cerebral cysts, retinal telangiectasias and angiomas, intrauterine growth retardation, skeletal and hematologic abnormalities, and severe intestinal bleeding, which overlap with features of the previously reported patients with "Coats plus" syndrome and "leukoencephalopathy with calcifications and cysts", suggesting that these disorders are related. All autopsied patients had similar neuropathologic findings showing calcifying obliterative microangiopathy. Our patients may represent an autosomally recessively inherited disorder because there were affected siblings and patients of both sexes. We have started genealogic and molecular genetic studies of this disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.